并不对劲的复健训练-bzoj5339:loj2578:p4593:[TJOI2018]教科书般的亵渎
题目大意
题解
先将\(a\)排序。
\(k\)看上去等于怪的血量连续段的个数,但是要注意当存在\(a_i+1=a_{i+1}\)时,虽然它们之间的连续段为空,但是还要算上;而当\(a_m=n\)时,最后一段连续段不用算。
考虑进行游戏的过程:设当前最大血量为\(p\),正在打出第\(q\)张亵渎,那么得到的分数是:\(\sum\limits_{i=1}^p i^k-\sum\limits_{i=q}^{m}(a_i-a_{q-1})^k\)。
后一部分可以直接求。
前一部分\(\sum\limits_{i=1}^p i^k\),通过观察查看题解发现求它的公式是个关于\(p\)的\(k+1\)次多项式,可以把\(p=1,2,...,k+2\)的值代入暴力求解,得到\(k+2\)个在该多项式的曲线上的点,然后通过拉格朗日插值求该多项式。
代码
#include<algorithm>
#include<cmath>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<ctime>
#include<iomanip>
#include<iostream>
#include<map>
#include<queue>
#include<set>
#include<stack>
#include<vector>
#define rep(i,x,y) for(register int i=(x);i<=(y);++i)
#define dwn(i,x,y) for(register int i=(x);i>=(y);--i)
#define view(u,k) for(int k=fir[u];~k;k=nxt[k])
#define LL long long
#define maxn 57
using namespace std;
LL read()
{
LL x=0,f=1;char ch=getchar();
while(!isdigit(ch)&&ch!='-')ch=getchar();
if(ch=='-')f=-1,ch=getchar();
while(isdigit(ch))x=(x<<1)+(x<<3)+ch-'0',ch=getchar();
return x*f;
}
void write(int x)
{
if(x==0){putchar('0'),putchar('\n');return;}
int f=0;char ch[20];
if(x<0)putchar('-'),x=-x;
while(x)ch[++f]=x%10+'0',x/=10;
while(f)putchar(ch[f--]);
putchar('\n');
return;
}
const LL mod=1e9+7;
LL n,a[maxn];
int t,m,f[maxn],b[maxn],qy[maxn],ans,sz,k;
int mul(int x,int y){int res=1;while(y){if(y&1)res=(LL)res*x%mod;x=(LL)x*x%mod,y>>=1;}return res;}
int mo(int x){return x>=mod?x-mod:x;}
void prew()
{
rep(i,1,sz)qy[i]=mo(qy[i-1]+mul(i,k)),f[i]=0;
f[0]=1;
rep(i,1,sz)dwn(j,i,1)f[j]=mo(f[j]+(LL)f[j-1]*(mod-i)%mod);
reverse(f,f+sz+1);
rep(i,1,sz)
{
int lst=0,num=1,nyx=mul(mod-i,mod-2);
rep(j,1,sz)if(i!=j)num=(LL)num*mo(i-j+mod)%mod;
num=(LL)mul(num,mod-2)*qy[i]%mod;
rep(i,0,sz-1)
{
lst=(LL)mo(f[i]-lst+mod)*nyx%mod,b[i]=mo(b[i]+(LL)lst*num%mod);
}
}
}
int getf(LL x)
{
if(x<=0)return 0;
x%=mod;
int res=0,now=1;
rep(i,0,sz-1)res=mo(res+(LL)b[i]*now%mod),now=(LL)now*x%mod;
return res;
}
int main()
{
t=read();
while(t--)
{
n=read(),m=read(),ans=0;k=m+1;
rep(i,1,m)a[i]=read();
sort(a+1,a+m+1);
if(a[m]==n)k--;
else a[++m]=n+1;sz=k+2;
prew();
rep(i,1,m)
{
ans=mo(ans+getf(a[m]-a[i-1]-1));
rep(j,i,m-1)ans=mo(ans-mul(a[j]-a[i-1],k)+mod);
}
write(ans);
rep(i,0,sz)b[i]=0;
}
return 0;
}
一些感想
说到求自然数幂和,就不得不说某年省选day1t3……
仔细想想,对于某些手很健康的人来说,可能写拉格朗日插值比写暴力的正解快?
并不对劲的复健训练-bzoj5339:loj2578:p4593:[TJOI2018]教科书般的亵渎的更多相关文章
- 【BZOJ5339】[TJOI2018]教科书般的亵渎(斯特林数)
[BZOJ5339][TJOI2018]教科书般的亵渎(斯特林数) 题面 BZOJ 洛谷 题解 显然交亵渎的次数是\(m+1\). 那么这题的本质就是让你求\(\sum_{i=1}^n i^{m+1} ...
- 并不对劲的复健训练-CF1187D
题目大意 有两个长度为\(n\)的序列\(a_1,...,a_n\),\(b_1,...,b_n\)(\(a,b\leq n\leq 3\times 10^5\) ).一次操作是选取 \([l,r]\ ...
- 并不对劲的复健训练-bzoj5250:loj2473:p4365:[九省联考2018]秘密袭击
题目大意 有一棵\(n\)(\(n\leq 1666\))个点的树,有点权\(d_i\),点权最大值为\(w\)(\(w\leq 1666\)).给出\(k\)(\(k\leq n\)),定义一个选择 ...
- 并不对劲的复健训练-CF1205B Shortest Cycle
题目大意 有\(n\)(\(n\leq 10^5\))个数\(a_1,...,a_n\)(\(a\leq 10^{18}\)).有一个图用这个方法生成:若\(a_i\)按位与\(a_j\)不为0,则在 ...
- 并不对劲的复健训练-p5212 SubString
题目大意 有一个串\(s\),一开始只知道它的一个前缀.有\(q\)(\(q\leq 10^4\))个操作,操作有两种:1.给一个字符串,表示\(s\)(\(s\)总长\(\leq 6\times 1 ...
- 并不对劲的复健训练-bzoj5249:loj2472:p4364[2018多省联考]IIIDX
题目大意 给出\(n,k,d_1,...,d_n\)(\(n\leq 5\times 10^5,1<k\leq 10^9,d\leq 10^9,k\in R\)).有一个满足 对于每个点\(i\ ...
- 并不对劲的复健训练-bzoj5253:loj2479:p4384:[2018多省联考]制胡窜
题目大意 给出一个字符串\(S\),长度为\(n\)(\(n\leq 10^5\)),\(S[l:r]\)表示\(S_l,S_{l+1}...,S_r\)这个子串.有\(m\)(\(m\leq 3\t ...
- 并不对劲的复健训练-bzoj5301:loj2534:p4462 [CQOI2018]异或序列
题目大意 给出一个序列\(a_1,...,a_n\)(\(a,n\leq 10^5\)),一个数\(k\)(\(k\leq 10^5\)),\(m\)(\(m\leq10^5\))次询问,每次询问给\ ...
- 并不对劲的复健训练-p3674
题目大意 给出序列$ a_1,...,a_n $ ( $ n\leq10^5,a\leq 10^5 $ ),有\(m\) ( \(m\leq 10^5\))个以下三类询问: (1)给出\(l,r,k\ ...
随机推荐
- @Value和@PropertySource实现*.properties配置文件读取过程和实现原理
@Value和@PropertySource实现*.properties 配置文件读取过程和实现原理 1 配置使用步骤 (1)右击resource目录添加*.prooerties配置文件
- legend3---7、videojs的使用配置的启示是什么
legend3---7.videojs的使用配置的启示是什么 一.总结 一句话总结: 很多东西网上都有现成的,直接拿来用就好,效果是又快又好 1.用auth认证登录的时候报 "validat ...
- mysql:启动服务时遇到的问题
1.cmd命令: 在切换路径时,如果要切到另外一个磁盘,比如从C盘切到E盘,命令如下: cd /d 你要切换的路径 2.错误:“服务名无效” 问题原因:mysql服务没有安装.(参考:https:// ...
- Difference between C# compiler version and language version
Difference between C# compiler version and language version As nobody gives a good enough answer ...
- 前端三大框架(Angular Vue React)
前端,HTML(超文本标记语言),CSS(层叠样式表)和JavaScript(脚本语言) HTML,通常说的h5,其实按标准来说,HTML4的后续版本不带编号了,并保证向前的兼容性 CSS的版本3,增 ...
- css清除浮动的几种方式,哪种最合适?
细心的人可能发现了,写的导航条中存在一个问题,那就是使用了float之后,父级盒子的高度变为0了. 我们来写一个例子来看一下,创建一个父级div,并设置border属性,然后下边创建两个子元素span ...
- Java并发包concurrent——ConcurrentHashMap
转: Java并发包concurrent——ConcurrentHashMap 2018年07月19日 20:43:23 Bill_Xiang_ 阅读数 16390更多 所属专栏: Java Conc ...
- Selenium 2自动化测试实战38(整合自动发邮件功能)
整合自动发邮件功能 解决了前面的问题后,现在就可以将自动发邮件功能集成到自动化测试项目中了.下面重新编辑runtest.py文件 #runtest.py #coding:utf-8 from HTML ...
- ssm整合用到的web.xml配置
<?xml version="1.0" encoding="UTF-8"?><web-app xmlns="http://xmlns ...
- 1. hadoop使用启动命令时报错之分析解决
今天在学习hadoop启动命令的时候,先jps看了下,发现namenode.datanode都开着,所以想要先停止这些服务,结果输入命令后报错:“WARN util.NativeCodeLoader: ...