题目描述

求出1~13的整数中1出现的次数,并算出100~1300的整数中1出现的次数?为此他特别数了一下1~13中包含1的数字有1、10、11、12、13因此共出现6次,但是对于后面问题他就没辙了。ACMer希望你们帮帮他,并把问题更加普遍化,可以很快的求出任意非负整数区间中1出现的次数。
#include<iostream>
using namespace std;
int main()
{
int n, N, cnt = 0;
scanf("%d",&N);//输入N值。
for(n = 1;n<=N; n ++)//循环执行
{
int t = n;
while(t)//循环取出每一位。
{
if(t%10 == 1) cnt++;
t/=10;
}
}
printf("%d\n", cnt);//输出结果
return 0;
}

  

class Solution {
public:
    int NumberOf1Between1AndN_Solution(int n)
    {
        int count = 0;
        for(int i=0; i<=n; i++){
            int temp = i;
            //如果temp的任意位为1则count++
            while(temp){
                if(temp%10 == 1)
                    count++;
                temp /= 10;
            }
        }
        return count;   
    }
};

  

http://www.cnblogs.com/nailperry/p/4752987.html

/*
设N = abcde ,其中abcde分别为十进制中各位上的数字。
如果要计算百位上1出现的次数,它要受到3方面的影响:百位上的数字,百位以下(低位)的数字,百位以上(高位)的数字。
① 如果百位上数字为0,百位上可能出现1的次数由更高位决定。比如:12013,则可以知道百位出现1的情况可能是:100~199,1100~1199,2100~2199,,...,11100~11199,一共1200个。可以看出是由更高位数字(12)决定,并且等于更高位数字(12)乘以 当前位数(100)。
② 如果百位上数字为1,百位上可能出现1的次数不仅受更高位影响还受低位影响。比如:12113,则可以知道百位受高位影响出现的情况是:100~199,1100~1199,2100~2199,,....,11100~11199,一共1200个。和上面情况一样,并且等于更高位数字(12)乘以 当前位数(100)。但同时它还受低位影响,百位出现1的情况是:12100~12113,一共114个,等于低位数字(113)+1。
③ 如果百位上数字大于1(2~9),则百位上出现1的情况仅由更高位决定,比如12213,则百位出现1的情况是:100~199,1100~1199,2100~2199,...,11100~11199,12100~12199,一共有1300个,并且等于更高位数字+1(12+1)乘以当前位数(100)。
*/
public class Solution {
public int NumberOf1Between1AndN_Solution(int n) {
int count = 0;//1的个数
int i = 1;//当前位
int current = 0,after = 0,before = 0;
while((n/i)!= 0){
current = (n/i)%10; //高位数字
before = n/(i*10); //当前位数字
after = n-(n/i)*i; //低位数字
//如果为0,出现1的次数由高位决定,等于高位数字 * 当前位数
if (current == 0)
count += before*i;
//如果为1,出现1的次数由高位和低位决定,高位*当前位+低位+1
else if(current == 1)
count += before * i + after + 1;
//如果大于1,出现1的次数由高位决定,//(高位数字+1)* 当前位数
else{
count += (before + 1) * i;
}
//前移一位
i = i*10;
}
return count;
}
}

  

整数中1出现的次数(1~n)的更多相关文章

  1. 整数中1出现的次数(从1到n整数中1出现的次数)

    题目:求出1~13的整数中1出现的次数,并算出100~1300的整数中1出现的次数?为此他特别数了一下1~13中包含1的数字有1.10.11.12.13因此共出现6次,但是对于后面问题他就没辙了.AC ...

  2. 剑指Offer:面试题32——从1到n整数中1出现的次数(java实现)

    问题描述: 输入一个整数n,求1到n这n个整数的十进制表示中1出现的次数.例如输入12,从1到12这些整数中包含1的数字有1,10,11,12,1一共出现了5次. 思路:(不考虑时间效率的解法,肯定不 ...

  3. 题目1373:整数中1出现的次数(从1到n整数中1出现的次数)

    题目1373:整数中1出现的次数(从1到n整数中1出现的次数) 题目描述: 亲们!!我们的外国友人YZ这几天总是睡不好,初中奥数里有一个题目一直困扰着他,特此他向JOBDU发来求助信,希望亲们能帮帮他 ...

  4. 剑指Offer 整数中1出现的次数(从1到n整数中1出现的次数)

    题目描述 求出1~13的整数中1出现的次数,并算出100~1300的整数中1出现的次数?为此他特别数了一下1~13中包含1的数字有1.10.11.12.13因此共出现6次,但是对于后面问题他就没辙了. ...

  5. 1049. Counting Ones/整数中1出现的次数(从1到n整数中1出现的次数)

    The task is simple: given any positive integer N, you are supposed to count the total number of 1's ...

  6. 【面试题032】从1到n整数中1出现的次数

    [面试题032]从1到n整数中1出现的次数 题目:     输入一个整数n,求从1到n这n个整数的十进制表示中1出现的次数.     例如输入12,从1到12这些整数中包含1的数字有1,10,11和1 ...

  7. 九度OJ 1373 整数中1出现的次数(从1到n整数中1出现的次数)

    题目地址:http://ac.jobdu.com/problem.php?pid=1373 题目描述: 亲们!!我们的外国友人YZ这几天总是睡不好,初中奥数里有一个题目一直困扰着他,特此他向JOBDU ...

  8. 【剑指offer】面试题32:从1到n整数中1出现的次数

    题目: 求出1~13的整数中1出现的次数,并算出100~1300的整数中1出现的次数?为此他特别数了一下1~13中包含1的数字有1.10.11.12.13因此共出现6次,但是对于后面问题他就没辙了.A ...

  9. 时间效率:整数中1出现的次数(从1到n整数中1出现的次数)

    求出1~13的整数中1出现的次数,并算出100~1300的整数中1出现的次数?为此他特别数了一下1~13中包含1的数字有1.10.11.12.13因此共出现6次,但是对于后面问题他就没辙了.ACMer ...

  10. 整数中1出现的次数(从1到n的整数中1出现的次数)

    题目 求出1~13的整数中1出现的次数,并算出100~1300的整数中1出现的次数?为此他特别数了一下1~13中包含1的数字有1.10.11.12.13因此共出现6次,但是对于后面问题他就没辙了.AC ...

随机推荐

  1. 力扣(LeetCode)922. 按奇偶排序数组 II

    给定一个非负整数数组 A, A 中一半整数是奇数,一半整数是偶数. 对数组进行排序,以便当 A[i] 为奇数时,i 也是奇数:当 A[i] 为偶数时, i 也是偶数. 你可以返回任何满足上述条件的数组 ...

  2. nRF52832-PPI部分学习

    PPI部分学习思维导图 PPI原理 1.1PPI简介 PPI实现的就是通过初始化配置,将不同外设的事件和任务连接起来,让事件自动去触发任务的功能,PPI有多个通道, 每个通道包含一个EEP和TEP,使 ...

  3. Qt访问注册表并调用子进程

    在实际应用中需要在一个进程启动另外一个进程,可以将子进程的路径写入注册表中,然后主进程读取注册表中子进程路径,启动子进程,并以命令行参数的形式传入参数,启动子进程.具体实现方式如下 (1)      ...

  4. openstack环境搭建常用命令

    1,编辑/etc/selinux/config文件,关闭selinux SELINUX=disabled 2,清空iptables规则并保存 # iptables -F # service iptab ...

  5. 动态规划-击爆气球 Burst Balloons

    2018-10-03 19:29:43 问题描述: 问题求解: 很有意思的题目,首先想到的是暴力遍历解空间,当然也用到了memo,可惜还是TLE,因为时间复杂度确实有点过高了,应该是O(n!). Ma ...

  6. spring aop通过注解实现日志记录

    首先是几个概念:连接点(Joinpoint).切点(Pointcut).增强(Advice).切面(Aspect) 另外也要使用到注解. 需求:通过注解定义LogEnable.然后程序运行能够识别定义 ...

  7. PHP curl是什么

    PHP curl是什么 一.总结 一句话总结:PHP支持的由Daniel Stenberg创建的libcurl库允许你与各种的服务器使用各种类型的协议进行连接和通讯. libcurl库 允许你与各种的 ...

  8. 雷林鹏分享:C# 数组(Array)

    C# 数组(Array) 数组是一个存储相同类型元素的固定大小的顺序集合.数组是用来存储数据的集合,通常认为数组是一个同一类型变量的集合. 声明数组变量并不是声明 number0.number1... ...

  9. 20170822xlVBA ExportCellPhone

    Public Sub GetCellPhone() Dim CellPhone As String Dim Arr As Variant Dim Brr As Variant Dim n As Lon ...

  10. windows如何简单安装mongodb

    windows如何安装mongodb 步骤: 1.下载地址 2.选择zip(解压版本) 3.压缩文件解压到  /D:盘 4.在 D:盘  下建一个 data文件夹,data下建 db文件夹:   D: ...