数据标准化+网格搜索+交叉验证+预测(Python)
Download datasets iris_training.csv from:https://github.com/tensorflow/tensorflow/tree/master/tensorflow/examples/tutorials/monitors
Method: SVR
# -*- coding: utf-8 -*- import pandas as pd
from sklearn.grid_search import GridSearchCV
from sklearn import svm, datasets
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.utils import shuffle
import numpy as np
from sklearn import metrics
df = pd.read_csv('iris_training.csv', header=0)
parameters = {'kernel':['rbf'], 'gamma':np.logspace(-5, 0, num=6, base=2.0),'C':np.logspace(-5, 5, num=11, base=2.0)}
grid_search = GridSearchCV(svm.SVR(), parameters, cv=10, n_jobs=4, scoring='mean_squared_error') X = df[df.columns.drop('virginica')]
y = df['virginica'] X_train, X_test, y_train, y_test = train_test_split(\
X, y, test_size=0.3, random_state=42) random_seed = 13
X_train, y_train = shuffle(X_train, y_train, random_state=random_seed)
X_scaler = StandardScaler()
X_train = X_scaler.fit_transform(X_train)
X_test = X_scaler.transform(X_test) grid_search.fit(X_train,y_train)
y_pred = grid_search.predict(X_test) print 'mean_squared_error:'+str(metrics.mean_squared_error(y_test,y_pred)),\
'r2_score:'+str(metrics.r2_score(y_test,y_pred))
Neural Network:
# -*- coding: utf-8 -*- import pandas as pd
from sklearn.grid_search import GridSearchCV
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.utils import shuffle
import numpy as np
from sklearn import metrics
from sklearn.neural_network import MLPRegressor
df = pd.read_csv('iris_training.csv', header=0) #neural networks for regresion
parameters = {'hidden_layer_sizes':[200,250,300,400,500,600], 'activation':['relu']}
grid_search = GridSearchCV(MLPRegressor(), parameters, cv=10, n_jobs=4, scoring='mean_squared_error') X = df[df.columns.drop('virginica')]
y = df['virginica'] X_train, X_test, y_train, y_test = train_test_split(\
X, y, test_size=0.3, random_state=42) random_seed = 13
X_train, y_train = shuffle(X_train, y_train, random_state=random_seed)
X_scaler = StandardScaler()
X_train = X_scaler.fit_transform(X_train)
X_test = X_scaler.transform(X_test) grid_search.fit(X_train,y_train)
y_pred = grid_search.predict(X_test) print 'mean_squared_error:'+str(metrics.mean_squared_error(y_test,y_pred)),\
'r2_score:'+str(metrics.r2_score(y_test,y_pred))
数据标准化+网格搜索+交叉验证+预测(Python)的更多相关文章
- scikit-learn一般实例之一:绘制交叉验证预测
本实例展示怎样使用cross_val_predict来可视化预测错误: # coding:utf-8 from pylab import * from sklearn import datasets ...
- 机器学习之路:python 网格搜索 并行搜索 GridSearchCV 模型检验方法
git:https://github.com/linyi0604/MachineLearning 如何确定一个模型应该使用哪种参数? k折交叉验证: 将样本分成k份 每次取其中一份做测试数据 其他做训 ...
- 十折交叉验证10-fold cross validation, 数据集划分 训练集 验证集 测试集
机器学习 数据挖掘 数据集划分 训练集 验证集 测试集 Q:如何将数据集划分为测试数据集和训练数据集? A:three ways: 1.像sklearn一样,提供一个将数据集切分成训练集和测试集的函数 ...
- 机器学习--K折交叉验证和非负矩阵分解
1.交叉验证 交叉验证(Cross validation),交叉验证用于防止模型过于复杂而引起的过拟合.有时亦称循环估计, 是一种统计学上将数据样本切割成较小子集的实用方法. 于是可以先在一个子集上做 ...
- 支持向量机(SVM)利用网格搜索和交叉验证进行参数选择
上一回有个读者问我:回归模型与分类模型的区别在哪?有什么不同,我在这里给他回答一下 : : : : 回归问题通常是用来预测一个值,如预测房价.未来的天气情况等等,例如一个产品的实际价格为500元,通过 ...
- libsvm交叉验证与网格搜索(参数选择)
首先说交叉验证.交叉验证(Cross validation)是一种评估统计分析.机器学习算法对独立于训练数据的数据集的泛化能力(generalize), 能够避免过拟合问题.交叉验证一般要尽量满足:1 ...
- Python之网格搜索与检查验证-5.2
一.网格搜索,在我们不确定超参数的时候,需要通过不断验证超参数,来确定最优的参数值.这个过程就是在不断,搜索最优的参数值,这个过程也就称为网格搜索. 二.检查验证,将准备好的训练数据进行平均拆分,分为 ...
- 机器学习 - 案例 - 样本不均衡数据分析 - 信用卡诈骗 ( 标准化处理, 数据不均处理, 交叉验证, 评估, Recall值, 混淆矩阵, 阈值 )
案例背景 银行评判用户的信用考量规避信用卡诈骗 ▒ 数据 数据共有 31 个特征, 为了安全起见数据已经向了模糊化处理无法读出真实信息目标 其中数据中的 class 特征标识为是否正常用户 (0 代表 ...
- Python机器学习笔记 Grid SearchCV(网格搜索)
在机器学习模型中,需要人工选择的参数称为超参数.比如随机森林中决策树的个数,人工神经网络模型中隐藏层层数和每层的节点个数,正则项中常数大小等等,他们都需要事先指定.超参数选择不恰当,就会出现欠拟合或者 ...
随机推荐
- 程序修改图标后显示未更新——强制刷新windows图标缓存
http://blog.csdn.net/vvlowkey/article/details/51133486 20160412 问题:修改兴迪局放测量软件图标后,release文件夹中生成文件的小图标 ...
- Echarts 修改字体样色 X、Y轴
1.雷达图修改字体颜色 polar: [ { name:{ show: true, formatter: null, textStyle: { //设置颜色 color: '#109cad' } }, ...
- java多线程同步机制
一.关键字: thread(线程).thread-safe(线程安全).intercurrent(并发的) synchronized(同步的).asynchronized(异步的). volatile ...
- “ORA-06550: 第 1 行, 第 7 列”解决方法
将本机能正常运行的维修生产日志代码发布到公司内测环境里无法正常运行,报错如下: execute() - pls–QuartzJob.java–quartzjob 开始执行! java.sql.SQLE ...
- Java——String,StringBuffer,StringBuilder
String 一经创建,不可更改,每次更改都是创建新对象,销毁旧对象 StringBuilder 创建后可修改,多线程不安全 StringBuffer 创建后可修改,多线程安全 StringBuffe ...
- 力扣(LeetCode)389. 找不同
给定两个字符串 s 和 t,它们只包含小写字母. 字符串 t 由字符串 s 随机重排,然后在随机位置添加一个字母. 请找出在 t 中被添加的字母. 示例: 输入: s = "abcd&quo ...
- sort-归并排序
void sort_merge(vector<int> &v,int left,int right) { if(left>=right) return; int mid=(l ...
- 第 2 章 容器架构 - 006 - 容器 What, Why, How
What - 什么是容器? 容器: 容器是一种轻量级.可移植.自包含的软件打包技术,使应用程序可以在几乎任何地方以相同的方式运行. 开发人员在自己笔记本上创建并测试好的容器,无需任何修改就能够在生产系 ...
- (转)UCOSII源代码剖析
启动工作原理 刚接触操作系统的时候觉得这个最神秘,到底里面做了什么,怎么就成了个操作系统,它到底有什么用,为什么要引进来着个东东.学了之后才知道,原来最根本的思想还是源于汇编里面的跳转和压栈,以调用一 ...
- 确认OHS版本的方法
还是 opatch lsinventory 好用 C:\Oracle\Middleware\ohs\OPatch>opatch lsinventory Oracle Interim Patch ...