Download datasets iris_training.csv from:https://github.com/tensorflow/tensorflow/tree/master/tensorflow/examples/tutorials/monitors

Method: SVR

# -*- coding: utf-8 -*-

import pandas as pd
from sklearn.grid_search import GridSearchCV
from sklearn import svm, datasets
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.utils import shuffle
import numpy as np
from sklearn import metrics
df = pd.read_csv('iris_training.csv', header=0)
parameters = {'kernel':['rbf'], 'gamma':np.logspace(-5, 0, num=6, base=2.0),'C':np.logspace(-5, 5, num=11, base=2.0)}
grid_search = GridSearchCV(svm.SVR(), parameters, cv=10, n_jobs=4, scoring='mean_squared_error') X = df[df.columns.drop('virginica')]
y = df['virginica'] X_train, X_test, y_train, y_test = train_test_split(\
X, y, test_size=0.3, random_state=42) random_seed = 13
X_train, y_train = shuffle(X_train, y_train, random_state=random_seed)
X_scaler = StandardScaler()
X_train = X_scaler.fit_transform(X_train)
X_test = X_scaler.transform(X_test) grid_search.fit(X_train,y_train)
y_pred = grid_search.predict(X_test) print 'mean_squared_error:'+str(metrics.mean_squared_error(y_test,y_pred)),\
'r2_score:'+str(metrics.r2_score(y_test,y_pred))

Neural Network:

# -*- coding: utf-8 -*-

import pandas as pd
from sklearn.grid_search import GridSearchCV
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.utils import shuffle
import numpy as np
from sklearn import metrics
from sklearn.neural_network import MLPRegressor
df = pd.read_csv('iris_training.csv', header=0) #neural networks for regresion
parameters = {'hidden_layer_sizes':[200,250,300,400,500,600], 'activation':['relu']}
grid_search = GridSearchCV(MLPRegressor(), parameters, cv=10, n_jobs=4, scoring='mean_squared_error') X = df[df.columns.drop('virginica')]
y = df['virginica'] X_train, X_test, y_train, y_test = train_test_split(\
X, y, test_size=0.3, random_state=42) random_seed = 13
X_train, y_train = shuffle(X_train, y_train, random_state=random_seed)
X_scaler = StandardScaler()
X_train = X_scaler.fit_transform(X_train)
X_test = X_scaler.transform(X_test) grid_search.fit(X_train,y_train)
y_pred = grid_search.predict(X_test) print 'mean_squared_error:'+str(metrics.mean_squared_error(y_test,y_pred)),\
'r2_score:'+str(metrics.r2_score(y_test,y_pred))

数据标准化+网格搜索+交叉验证+预测(Python)的更多相关文章

  1. scikit-learn一般实例之一:绘制交叉验证预测

    本实例展示怎样使用cross_val_predict来可视化预测错误: # coding:utf-8 from pylab import * from sklearn import datasets ...

  2. 机器学习之路:python 网格搜索 并行搜索 GridSearchCV 模型检验方法

    git:https://github.com/linyi0604/MachineLearning 如何确定一个模型应该使用哪种参数? k折交叉验证: 将样本分成k份 每次取其中一份做测试数据 其他做训 ...

  3. 十折交叉验证10-fold cross validation, 数据集划分 训练集 验证集 测试集

    机器学习 数据挖掘 数据集划分 训练集 验证集 测试集 Q:如何将数据集划分为测试数据集和训练数据集? A:three ways: 1.像sklearn一样,提供一个将数据集切分成训练集和测试集的函数 ...

  4. 机器学习--K折交叉验证和非负矩阵分解

    1.交叉验证 交叉验证(Cross validation),交叉验证用于防止模型过于复杂而引起的过拟合.有时亦称循环估计, 是一种统计学上将数据样本切割成较小子集的实用方法. 于是可以先在一个子集上做 ...

  5. 支持向量机(SVM)利用网格搜索和交叉验证进行参数选择

    上一回有个读者问我:回归模型与分类模型的区别在哪?有什么不同,我在这里给他回答一下 : : : : 回归问题通常是用来预测一个值,如预测房价.未来的天气情况等等,例如一个产品的实际价格为500元,通过 ...

  6. libsvm交叉验证与网格搜索(参数选择)

    首先说交叉验证.交叉验证(Cross validation)是一种评估统计分析.机器学习算法对独立于训练数据的数据集的泛化能力(generalize), 能够避免过拟合问题.交叉验证一般要尽量满足:1 ...

  7. Python之网格搜索与检查验证-5.2

    一.网格搜索,在我们不确定超参数的时候,需要通过不断验证超参数,来确定最优的参数值.这个过程就是在不断,搜索最优的参数值,这个过程也就称为网格搜索. 二.检查验证,将准备好的训练数据进行平均拆分,分为 ...

  8. 机器学习 - 案例 - 样本不均衡数据分析 - 信用卡诈骗 ( 标准化处理, 数据不均处理, 交叉验证, 评估, Recall值, 混淆矩阵, 阈值 )

    案例背景 银行评判用户的信用考量规避信用卡诈骗 ▒ 数据 数据共有 31 个特征, 为了安全起见数据已经向了模糊化处理无法读出真实信息目标 其中数据中的 class 特征标识为是否正常用户 (0 代表 ...

  9. Python机器学习笔记 Grid SearchCV(网格搜索)

    在机器学习模型中,需要人工选择的参数称为超参数.比如随机森林中决策树的个数,人工神经网络模型中隐藏层层数和每层的节点个数,正则项中常数大小等等,他们都需要事先指定.超参数选择不恰当,就会出现欠拟合或者 ...

随机推荐

  1. 【译】第37节---EF6-异步查询和保存

    原文:http://www.entityframeworktutorial.net/entityframework6/async-query-and-save.aspx 你可以在.NET4.5下使用 ...

  2. maven springMVC SSM框架中 出现的406 (Not Acceptable)

    首先,需要清楚,http state 406代表什么意思: 406是HTTP协议状态码的一种,表示无法使用请求的特性来响应请求的网页.一般指客户端浏览器不接受所请求页面的MIME类型. 出现这样的错误 ...

  3. [从零开始搭网站二]服务器环境配置:Mac电脑连接CentOS不用每次都输入密码

    上一篇讲了如何购买服务器,并且***.看这里的第一篇文章: 从零开始搭网站 从这里开始的文章,我会默认大家都是最起码是入门级的程序员,如果你完全不懂我在说什么,那就退出好了. 作为开发人员,接下来为了 ...

  4. 详解JS中DOM 元素的 attribute 和 property 属性

    一.'表亲戚':attribute和property 为什么称attribute和property为'表亲戚'呢?因为他们既有共同处,也有不同点. attribute 是 dom 元素在文档中作为 h ...

  5. 用Github做一个静态网页(GithubPages)

    一.新建一个仓库(new). 二.命名Repository name为:(名字).github.io(一定要有.github.io). 三.勾选Initialize this repository w ...

  6. python requests post和get

    import requests import time import hashlib import os import json from contextlib import closing impo ...

  7. VS IIS Express 支持局域网访问

    使用Visual Studio开发Web网页的时候有这样的情况:想要在调试模式下让局域网的其他设备进行访问,以便进行测试.虽然可以部署到服务器中,但是却无法进行调试,就算是注入进程进行调试也是无法达到 ...

  8. [原][spark]帧序列的纹理UV索引,修改spark源码,改变纹理索引方式,支持常规帧序列

    spark的纹理索引方式是左下为最小值0 右上为最大值k ,遍历顺序为横向即: 3 4 5 0 1 2 而常规的纹理帧序列是这样的: 0 1 2 3 4 5 所以,为了让spark的纹理遍历顺序能按照 ...

  9. PySpark笔记

    spark源码位置:https://github.com/apache/spark Spark Core核心RDD及编程 什么是RDD:1.是一个抽象类不能直接使用,在子类中实现抽象方法是一个抽象类不 ...

  10. 关于datatables自适应以及自定义列宽度的总结

    table-layout:fixed;可以自定义列的宽度 <div id="bizhi" style="width:100%;height: 85%;overflo ...