Matplotlib是一个Python 2D绘图库, 只需几行代码即可生成绘图,直方图,功率谱,条形图,错误图,散点图等。 有关示例,请参阅示例图和缩

import matplotlib.pyplot as plt
import numpy as np
class TestPlot(object):
def __init__(self,plt):
self.plt = plt
#定义内部属性
# 解决中文乱码问题(第二种)
plt.rcParams['font.sans-serif'] = ['SimHei']
#指定编码
plt.rcParams['axes.unicode_minus'] = False #定义面积图方法(*********************************************) def my_area(self):
#定义日期区间
data = ['2019-03-01','2019-03-02','2019-03-03','2019-03-04','2019-03-05']
#定义数据
#收入
earn = [166,155,355,422,622]
#支出
pay = [[16,30,25,46,20],[10,15,20,144,122]]
#将数据传入方法
self.plt.stackplot(data,earn,pay,colors=['green','yellow','orange'])
#生成图例
self.plt.plot([],[],color='green',label="收入")
self.plt.plot([],[],color='yellow',label="午餐")
self.plt.plot([],[],color='orange',label="晚餐")
#设置标题
self.plt.title("面积图样例")
self.plt.legend()
self.plt.show()
#定义柱状图(*********************************************)
def my_bar(self):
my_plt = self.plt
GDP = [12404.1,13396.222,5335.22,5223.22]
my_plt.bar(["北京",'上海','深圳','重庆'],GDP,align='center',color="lime",alpha=0.8)
my_plt.ylabel("生产总值")
#添加标题
my_plt.title("直辖市GDP")
#刻度范围
my_plt.ylim([5000,15000])
my_plt.show()
#定义饼图(*********************************************)
def my_pie(self):
my_plt = self.plt
beijing = [17,22,23,46]
#定义标签
label = ['2-3年','3-4年','4-5年','五年以上']
color = ['red','green','blue','purple']
#将数值最大的突出展示
indic = []
#使用enumerate方法来添加索引
for index,i in enumerate(beijing):
if i == max(beijing):
indic.append(0.5)
elif index == 1:
indic.append(0.2)
else:
indic.append(0)
# for i in beijing:
# if i == max(beijing):
# indic.append(0.1)
# else:
# indic.append(0)
#将数据传入 ,数据,标签,颜色,角度,阴影,突出显示
my_plt.pie(
beijing,
labels= label,
colors = color,
startangle=90,
shadow = True,
explode = tuple(indic),
#格式化数字
autopct = "%1.1f%%"
)
# 设置标题
my_plt.title("饼图实例-统计北京程序员工龄占比")
my_plt.show()
##曲线图走势图(*********************************************)
def my_line(self):
my_line= self.plt
# #设置本机字体(第一种)
# font = FontProperties(fname='C:/Windows/Fonts/simhei.ttf',size=15)
#定制数据
x1 = ['2019-03-01','2019-03-02','2019-03-03','2019-03-04','2019-03-05','2019-03-06']
y1 = [0,6,9,5,3,2]
y2 = [10,12,16,12,16,17]
#填充数据
my_line.plot(x1,y1,label='temperature')
my_line.plot(x1,y2,label='water')
#设置标题
# my_line.title("趋势图",FontProperties=font)
my_line.title("趋势图")
# #显示图例
my_line.legend()
my_line.show()
#点状图(*********************************************)
def my_dot(self):
my_dot = self.plt
x = list(range(101))
y = [xvalue * np.random.rand() for xvalue in x]
#填充数据 s 点的大小和粗细 c 颜色
my_dot.scatter(x,y,s=20,c='lime')
#绘图
my_dot.show()
# 定义横向条形图(*********************************************)
def my_barh(self):
my_plt = self.plt
#定义价格
price = [40,32.8,20,19.6]
#将数据传入
my_plt.barh(range(4),price,align="center",color="red",alpha=0.5)
#设置标签
my_plt.xlabel('价格')
#将数据传入y轴
my_plt.yticks(range(4),['红楼梦','三国演义','西游记','水浒传'])
#设置上下限
my_plt.xlim([10,60])
#设置标题
my_plt.title("四大名著")
#绘制
my_plt.show() if __name__ == "__main__":
testplot = TestPlot(plt)
# testplot.my_area()
# testplot.my_bar()
# testplot.my_pie()
# testplot.my_line()
# testplot.my_dot()
# testplot.my_barh() # # Matplot 生成子图(一个图中两个子图)
# #第一组数据
# x1 = list(range(5))
# y1 = list(map(lambda x:x**2,x1))
# #第二组数据
# x2 = list(range(4,10))
# y2 = list(map(lambda x:x**2/2,x2)) # ##做第一幅图 2*1矩阵
# ax1 = plt.subplot(121)
# #传入数据
# ax1.plot(x1,y1)
# ax2 = plt.subplot(122)
# ax2.plot(x2,y2)
# # #删除字图
# # plt.delaxes(ax2)
# # #增加字图
# # plt.subplot(ax2)
# plt.show() #画散点图 # df = pd.read_excel('tips.xlsx','sheet1')
# df.plot(kind='hist',x='tip',y='total_bill',color='lime',label='bill_tip')
# plt.title("heelo")
# plt.show()

略图库。

Matplotlib 简单的使用的更多相关文章

  1. matplotlib简单示例

    一.简介 以下引用自百度百科 Matplotlib 是一个 Python 的 2D绘图库,它以各种硬拷贝格式和跨平台的交互式环境生成出版质量级别的图形 . 通过 Matplotlib,开发者可以仅需要 ...

  2. matplotlib简单的使用(二)

    1.折线图 import matplotlib as mlb from matplotlib import pylab as pl # 折线图 # 分别创建x,y坐标 x = [1,3,5,7,6,9 ...

  3. python matplotlib 简单生成图

    import numpy as np import pandas as pd from matplotlib import pyplot as plt data = pd.DataFrame([[1, ...

  4. Matplotlib 简单图例

    图例参考:http://matplotlib.org/gallery.html API参考:http://matplotlib.org/api/pyplot_summary.html # -*- co ...

  5. matplotlib简单的新手教程和动画

    做数据分析,首先是要熟悉和理解数据,所以掌握一个趁手的可视化工具是很重要的,否则对数据连个主要的感性认识都没有,怎样进行下一步的design 点击打开链接 还有一个非常棒的资料  Matplotlib ...

  6. python爬取旅游数据+matplotlib简单可视化

    题目如下: 共由6个函数组成: 第一个函数爬取数据并转为DataFrame: 第二个函数爬取数据后存入Excel中,对于解题来说是多余的,仅当练手以及方便核对数据: 后面四个函数分别对应题目中的四个m ...

  7. Matplotlib简单回顾

    import numpy as np from pylab import * from matplotlib import pyplot as plt x = [1, 2, 3, 4] y = [3, ...

  8. matplotlib简介及安装

    官网介绍: Matplotlib is a Python 2D plotting library which produces publication quality figures in a var ...

  9. matplotlib绘图基本用法-转自(http://blog.csdn.net/mao19931004/article/details/51915016)

    本文转载自http://blog.csdn.net/mao19931004/article/details/51915016 <!DOCTYPE html PUBLIC "-//W3C ...

随机推荐

  1. 3. Tensorflow生成TFRecord

    1. Tensorflow高效流水线Pipeline 2. Tensorflow的数据处理中的Dataset和Iterator 3. Tensorflow生成TFRecord 4. Tensorflo ...

  2. Spring Session Redis

    http://www.infoq.com/cn/articles/Next-Generation-Session-Management-with-Spring-Session

  3. 为app录制展示gif

    已同步更新至个人blog:http://dxjia.cn/2015/07/make-gif-for-app/ 在github上好多不错的开源项目展示demo的时候,都是采用了一个gif图片,很生动具体 ...

  4. HBuilder搭配逍遥Android模拟器进行开发

    1.逍遥模拟器安装 地址: 点我下载 2.连接注意事项 a. 复制adb等文件 HBuilder安装目录中tools文件夹下的三个文件adb.exe,AdbWinApi.dll,AdbWinUsbAp ...

  5. X-Frame-Options 配置

    最近在修改ASP老网站,使用是iframe框架部署上去后出现“此内容不能显示在一个框架中”错误 以下错误解决方案是需要配置:X-Frame-Options X-Frame-Options: 他的值有三 ...

  6. RMAN正确地删除Archivelog以及设置有备库的归档删除策略

    原文链接:http://blog.sina.com.cn/s/blog_64e166580100xks5.html 如何正确地删除Archivelog: Archivelog并不能直接得从OS层直接物 ...

  7. Java8学习笔记(十)--自定义收集器

    前言 以前写过Java8中的自定义收集器,当时只是在文章末尾放了个例子,觉得基本用法挺简单,而且有些东西没搞懂(比如combiner方法到底做什么的),没有专门写,过了一段时间又忘了,所以,即使还是没 ...

  8. swoole消息推送

    socket.php // 注释的部分是学习的笔记 <?php //创建websocket服务器对象,监听0.0.0.0:9502端口 $ws = ); //监听WebSocket连接打开事件 ...

  9. [JS] ECMAScript 6 - Inheritance : compare with c#

    这一章,估计是js最操蛋的一部分内容. 现代方法: 简介 Object.getPrototypeOf() super 关键字 类的 prototype 属性和__proto__属性 原生构造函数的继承 ...

  10. EventFlow.helper.js 事件流程控制

    /*! * 事件流程管理 * version: 1.0.0-2018.07.25 * Requires ES6 * Copyright (c) 2018 Tiac * http://www.cnblo ...