什么是Levenshtein

Levenshtein 距离,又称编辑距离,指的是两个字符串之间,由一个转换成另一个所需的最少编辑操作次数。许可的编辑操作包括将一个字符替换成另一个字符,插入一个字符,删除一个字符。levenshtein() 函数返回两个字符串之间的 Levenshtein 距离。编辑距离的算法是首先由俄国科学家Levenshtein提出的,故又叫Levenshtein Distance

实现过程

首先我们明确从一个字符串变化到另一个字符串需要进行添加、修改、删除来变化

如a变化到ab需要一步,添加一个b,

aa变化到ab需要修改一个a到b,

ab变化到a需要删除一个b。

首先我们确定了两个字符串str1,str2;假设这两个字符为a1a2a3a4......,b1b2b3......

那么构建一个二维矩阵

空   a1  a2  a3  a4 ......

空     [1]   [2]   [3]   [4]     [5]......

b1    [6]   [7]   [8]   [9]     [10]......

b2    [11]  [12]  [13] [14]   [15]......

b3    [16] [17]   .......

...

1.判断[1]左边为空,上面为空,从空到空需要变化0次

2.所以可以得到下面的矩阵

空   a1  a2  a3  a4 ......

空     0      1      2      3       4......

b1    1      [7]   [8]   [9]     [10]......

b2    2       [12]  [13] [14]   [15]......

b3    3      [17]   .......

.......

3.到7的位置表示了[空a1]变化到[空b1],这里我们需要得到三个值

1)从[2]变化到[7]需要的步数是[2]+1

2)从[6]变化到[7]需要的变化是[6]+1

3) 从[1]变化到[7]需要的变化是 ,如果a1=b1,那么需要0步,如果a1!=b1,那么需要删除一个a1在添加一个b1,需要2步,也就是大于1步。

我们取这三步中所需走的最短步数填到[7]的位置   。

4.以此推得到

Amn的值为Am-1n+1,Amn-1+1,Am-1n-1+x(当am=bn时x=0,否则x=2)的最小值

5.当求得的值的最后一位得到的值N,用1-n/(max(len(a),len(b)))得到相关度。

实现代码

 /// <summary>
/// Levenshtein 算法实现
/// </summary>
/// <param name="value1"></param>
/// <param name="values2"></param>
/// <returns></returns>
public static float Leven(string value1, string value2)
{
int len1 = value1.Length;
int len2 = value2.Length;
int [,] dif =new int[len1+,len2+];
for (int a=;a<=len1;a++)
{
dif[a,] = a;
}
for (int a = ; a <= len2; a++)
{
dif[, a] = a;
}
int temp =;
for (int i = ; i <= len1; i++)
{
for (int j = ; j <= len2; j++)
{
if (value1[i - ] == value2[j - ])
{ temp = ; }
else
{
temp = ;
}
dif[i,j] = Min(dif[i - ,j - ] + temp, dif[i,j - ] + ,
dif[i - ,j] + );
}
} float similarity=- (float)dif[len1, len2]/Math.Max(len1,len2);
return similarity;
} public static int Min(int a, int b, int c)
{
int i = a < b ? a : b;
return i = i < c ? i : c;
}

计算字符串相似度算法—Levenshtein的更多相关文章

  1. 计算字符串相似度算法——Levenshtein

    转自:http://wdhdmx.iteye.com/blog/1343856 0.这个算法实现起来很简单 1.百度百科介绍: Levenshtein 距离,又称编辑距离,指的是两个字符串之间,由一个 ...

  2. 字符串相似度算法——Levenshtein Distance算法

    Levenshtein Distance 算法,又叫 Edit Distance 算法,是指两个字符串之间,由一个转成另一个所需的最少编辑操作次数.许可的编辑操作包括将一个字符替换成另一个字符,插入一 ...

  3. 字符串相似度算法-LEVENSHTEIN DISTANCE算法

    Levenshtein Distance 算法,又叫 Edit Distance 算法,是指两个字符串之间,由一个转成另一个所需的最少编辑操作次数.许可的编辑操作包括将一个字符替换成另一个字符,插入一 ...

  4. 字符串相似度算法(编辑距离算法 Levenshtein Distance)(转)

    在搞验证码识别的时候需要比较字符代码的相似度用到“编辑距离算法”,关于原理和C#实现做个记录. 据百度百科介绍: 编辑距离,又称Levenshtein距离(也叫做Edit Distance),是指两个 ...

  5. 用C#实现字符串相似度算法(编辑距离算法 Levenshtein Distance)

    在搞验证码识别的时候需要比较字符代码的相似度用到"编辑距离算法",关于原理和C#实现做个记录. 据百度百科介绍: 编辑距离,又称Levenshtein距离(也叫做Edit Dist ...

  6. [转]字符串相似度算法(编辑距离算法 Levenshtein Distance)

    转自:http://www.sigvc.org/bbs/forum.php?mod=viewthread&tid=981 http://www.cnblogs.com/ivanyb/archi ...

  7. 字符串相似度算法(编辑距离算法 Levenshtein Distance)

    在搞验证码识别的时候需要比较字符代码的相似度用到“编辑距离算法”,关于原理和C#实现做个记录.据百度百科介绍:编辑距离,又称Levenshtein距离(也叫做Edit Distance),是指两个字串 ...

  8. 字符串相似度算法(编辑距离Levenshtein Distance)的应用场景

    应用场景 DNA分析: 将DNA的一级序列如β-球蛋白基因的第一个外显子(Exon)转化为分子“结构图”,然后由所得“结构图”提取图的不变量,如分子连接性指数.以图的不变量作为自变量,再由相似度计算公 ...

  9. PHP中计算字符串相似度的函数代码

    similar_text — 计算两个字符串的相似度 int similar_text ( string $first , string $second [, float &$percent ...

随机推荐

  1. quartus II输入原理图及仿真步骤

    在Quartus II中输入原理图以及实现仿真是学习基本数字电路的好方法.下面以一个基本的D锁存器为例,在quartus II 13.0中一步一步来实现原理图输入以及仿真过程. 1,创建工程 指定工程 ...

  2. Redis源码学习-Master&Slave的命令交互

    0. 写在前面 Version Redis2.2.2 Redis中可以支持主从结构,本文主要从master和slave的心跳机制出发(PING),分析redis的命令行交互. 在Redis中,serv ...

  3. Spark:几种给Dataset增加列的方式、Dataset删除列、Dataset替换null列

    几种给Dataset增加列的方式 首先创建一个DF对象: scala> spark.version res0: String = .cloudera1 scala> val , , 2.0 ...

  4. The correct way to initialize a dynamic pointer to a multidimensional array

    From:https://stackoverflow.com/questions/18273370/the-correct-way-to-initialize-a-dynamic-pointer-to ...

  5. 未能找到temp\select2.cur的一部分

    环境 操作系统:win10 家庭普通版本 x64 账户类型:管理员 SuperMap:9D 打开自定义的应用程序时,会报错:未能找到路径"C:\Users\user\AppData\Loca ...

  6. webservice 配置

    webservice 配置 <system.web> <!--允许GET/POST请求 --> <webServices> <protocols> &l ...

  7. 链接选项-rpath的一个问题记录

    问题简述 大概是这么一个情况,有一个过去已经写好的程序,这个程序用于处理网络通信,接收一些操作指令.具体的指令操作通过运行时加载动态库的形式进行扩展.(类似于net-snmp二次开发的一种形式) 问题 ...

  8. 设置response头信息禁止缓存

    java代码中可通过如下代码设置 response.setHeader("Pragma", "No-Cache"); response.setHeader(&q ...

  9. 【SqlServer】解析SqlServer的分页

    方式1: 假设页数是10,现在要拿出第5页的内容,查询语句如下: --10代表分页的大小 * from test where id not in ( --40是这么计算出来的:10*(5-1) id ...

  10. mysql 5.7中的threads

    >desc threads; +---------------------+---------------------+------+-----+---------+-------+ | Fie ...