先二分答案m,<=m的有m-∑(m/pi*pi)+∑(m/pi*pi*pj*pj)-……个符合题意的(容斥原理), 容斥系数就是莫比乌斯函数μ(预处理)...

------------------------------------------------------------------------

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
 
using namespace std;
 
typedef long long ll;
 
const int maxn = 1000000;
 
int N;
int p[maxn], mu[maxn], pn = 0;
bool F[maxn];
 
void Init() {
memset(F, 0, sizeof F);
for(int i = 2; i < maxn; i++) {
if(!F[i])
p[pn++] = i, mu[i] = -1;
for(int j = 0; j < pn && i * p[j] < maxn; j++) {
F[i * p[j]] = true;
if(i % p[j])
mu[i * p[j]] = -mu[i];
else {
mu[i * p[j]] = 0;
break;
}
}
}
}
 
bool chk(int n) {
ll cnt = n;
for(int i = 2, t = sqrt(n); i <= t; i++)
if(mu[i]) cnt += n / (ll) (i * i) * mu[i];
return cnt >= N;
}
 
int main() {
Init();
int T; scanf("%d", &T);
while(T--) {
scanf("%d", &N);
ll L = 1LL, R = 2000000000LL, ans;
while(L <= R) {
ll m = (L + R) >> 1;
if(chk(m))
ans = m, R = m - 1;
else
L = m + 1;
}
printf("%lld\n", ans);
}
return 0;
}

------------------------------------------------------------------------

2440: [中山市选2011]完全平方数

Time Limit: 10 Sec  Memory Limit: 128 MB
Submit: 1803  Solved: 869
[Submit][Status][Discuss]

Description

小 X 自幼就很喜欢数。但奇怪的是,他十分讨厌完全平方数。他觉得这些
数看起来很令人难受。由此,他也讨厌所有是完全平方数的正整数倍的数。然而
这丝毫不影响他对其他数的热爱。 
这天是小X的生日,小 W 想送一个数给他作为生日礼物。当然他不能送一
个小X讨厌的数。他列出了所有小X不讨厌的数,然后选取了第 K个数送给了
小X。小X很开心地收下了。 
然而现在小 W 却记不起送给小X的是哪个数了。你能帮他一下吗?

Input

包含多组测试数据。文件第一行有一个整数 T,表示测试
数据的组数。 
第2 至第T+1 行每行有一个整数Ki,描述一组数据,含义如题目中所描述。

Output

含T 行,分别对每组数据作出回答。第 i 行输出相应的
第Ki 个不是完全平方数的正整数倍的数。

Sample Input

4
1
13
100
1234567

Sample Output

1
19
163
2030745

HINT

对于 100%的数据有 1 ≤ Ki ≤ 10^9

,    T ≤ 50

Source

BZOJ 2440: [中山市选2011]完全平方数( 二分答案 + 容斥原理 + 莫比乌斯函数 )的更多相关文章

  1. BZOJ 2440 [中山市选2011]完全平方数 (二分 + 莫比乌斯函数)

    2440: [中山市选2011]完全平方数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 4805  Solved: 2325[Submit][Sta ...

  2. BZOJ 2440 [中山市选2011]完全平方数 二分+容斥

    直接筛$\mu$?+爆算?再不行筛素数再筛个数?但不就是$\mu^2$的前缀和吗? 放...怕不是数论白学了$qwq$ 思路:二分+容斥 提交:两次(康了题解) 题解: 首先答案满足二分性质(递增), ...

  3. BZOJ 2440 [中山市选2011]完全平方数 | 莫比乌斯函数

    BZOJ 2440 [中山市选2011]完全平方数 | 莫比乌斯函数 题面 找出第k个不是平方数的倍数的数(1不是平方数, \(k \le 10^9\)). 题解 首先二分答案,问题就转化成了求\([ ...

  4. Bzoj 2440: [中山市选2011]完全平方数(莫比乌斯函数+容斥原理+二分答案)

    2440: [中山市选2011]完全平方数 Time Limit: 10 Sec Memory Limit: 128 MB Description 小 X 自幼就很喜欢数.但奇怪的是,他十分讨厌完全平 ...

  5. BZOJ 2440: [中山市选2011]完全平方数 [容斥原理 莫比乌斯函数]

    2440: [中山市选2011]完全平方数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 3028  Solved: 1460[Submit][Sta ...

  6. [BZOJ 2440] [中山市选2011] 完全平方数 【二分 + 莫比乌斯函数】

    题目链接:BZOJ - 2440 题目分析 首先,通过打表之类的方法可以知道,答案不会超过 2 * k . 那么我们使用二分,对于一个二分的值 x ,求出 [1, x] 之间的可以送出的数有多少个. ...

  7. BZOJ.2440.[中山市选2011]完全平方数(莫比乌斯函数 二分)

    题目链接 总感觉博客园的\(Markdown\)很..\(gouzhi\),可以看这的. 题意即求第\(k\)个无平方因子数. 无平方因子数(Square-Free Number),即分解之后所有质因 ...

  8. bzoj 2440: [中山市选2011]完全平方数【莫比乌斯函数+二分】

    二分答案,然后用莫比乌斯函数作为容斥系数,计算当前枚举的mid内有几个满足要求的数 #include<iostream> #include<cstdio> #include&l ...

  9. bzoj 2440: [中山市选2011]完全平方数

    #include<cstdio> #include<iostream> #include<cstring> #include<cmath> #defin ...

随机推荐

  1. NOI2015 Day1

    NOI2015 Day1 程序自动分析 题目描述:给出等式或不等式\(n\)条,问\(n\)条式子是否成立. solution: 用并查集处理等式,在判断不等式是否成立. 时间复杂度:\(O(n)\) ...

  2. Pascal 线段树 lazy-tag 模板

    先说下我的代码风格(很丑,勿喷) maxn表示最大空间的四倍 tree数组表示求和的线段树 delta表示增减的增量标记 sign表示覆盖的标记 delta,sign实际上都是lazy标志 pushd ...

  3. var 与function的权重浅析

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  4. Myeclipse2014 SVN安装方法以及项目上传到svn服务器

    1. 打开 Myeclipse 工具栏下的Help下的Install from Site 2.打开后弹出窗口, 并点击Add标签,如下图: 3.现在是最重要的一步,填写相关信息. 在对话框Name输入 ...

  5. IOS UITextField &UITextView

    UITextField 限制textField长度 曾经,以为输入框只是输入字符的,但真的认真为一个登陆界面输入框而改了六七次以后,发现好烦人啊,先谢谢测试的不厌其烦,不杀之恩,不想再用IOS的输入框 ...

  6. ROS验证publisher和subscriber

    在前面的两篇博客中我们用C++在ROS中创建了一个发布者和接收者,并使用catkin_make构建了新的节点,下面就需要验证一下,我们写的是否正确. 首先运行roscore roscore 在使用ca ...

  7. Jquery 获取IP地址

    //获取ip和地址 $(function () { var url = 'http://chaxun.1616.net/s.php?type=ip&output=json&callba ...

  8. egret命令行编译项目时 版本不对应的问题

    egret 命令行编译项目时 如使用 egret build -e 会出现版本不对应的问题 分析原因 A,B项目 A项目使用1.8的egret引擎, B项目使用2.5引擎 但本地引擎升级至2.5.5, ...

  9. test md

    [TOC] Glossary SUT SYSTEM UNDER TEST CUT CLASS UNDER TEST MUT METHOD UNDER TEST Tests without Use of ...

  10. SVN创建分支

    工具:TortoiseSVN 创建一个空白项目,例如OA 从客户端检出OA,在OA文件夹下新建三个子文件夹 trunk:存放开发的主线,团队成员在开发的时候一直要用这个库中的内容 branches:存 ...