NYOJ128 前缀式计算 【栈】
前缀式计算
- 描写叙述
-
先说明一下什么是中缀式:
如2+(3+4)*5这样的我们最常见的式子就是中缀式。
而把中缀式按运算顺序加上括号就是:(2+((3+4)*5))
然后把运算符写到括号前面就是+(2 *( +(3 4) 5) )
把括号去掉就是:+ 2 * + 3 4 5
最后这个式子就是该表达式的前缀表示。
给你一个前缀表达式,请你计算出该前缀式的值。
比方:
+ 2 * + 3 4 5的值就是 37
- 输入
-
有多组測试数据。每组測试数据占一行,随意两个操作符之间,随意两个操作数之间,操作数与操作符之间都有一个空格。
输入的两个操作数可能是小数。数据保证输入的数都是正数,而且都小于10。操作数数目不超过500。
以EOF为输入结束的标志。 - 输出
- 对每组数据,输出该前缀表达式的值。输出结果保留两位小数。
- 例子输入
-
+ 2 * + 3 4 5
+ 5.1 / 3 7 - 例子输出
-
37.00
5.53 - 来源
- 经典题目
- 上传者
-
张云聪
在依照顺序读取前缀式时假设碰到符号就入栈。假设是数字那么就看栈顶元素是否是数字。假设是就弹出栈顶,再弹出符号。跟栈外面的数字进行运算。对于运算的结果,先别急着压栈。而是继续推断栈顶元素是否是数字。继续上面的操作。
#include <stdio.h>
#include <string.h>
#include <ctype.h> #define maxn 5000 struct Node {
double dig;
char sym;
} sta[maxn];
char buf[maxn]; double cal(double a, double b, char c) {
if(c == '+') return a + b;
if(c == '-') return a - b;
if(c == '*') return a * b;
return a / b;
} int main() {
// freopen("stdin.txt", "r", stdin);
double val;
int wid;
while(gets(buf)) {
for(int i = 0, id = 0; buf[i] != '\0'; ++i) {
if(buf[i] == ' ') continue;
if(isdigit(buf[i]) || buf[i] == '.') {
sscanf(buf + i, "%lf%n", &val, &wid);
while(id && !sta[id-1].sym) {
val = cal(sta[id-1].dig, val, sta[id-2].sym);
id -= 2;
}
sta[id].dig = val; sta[id++].sym = 0;
i = i + wid - 1;
} else sta[id++].sym = buf[i];
}
printf("%.2lf\n", sta[0].dig);
}
return 0;
}
NYOJ128 前缀式计算 【栈】的更多相关文章
- NYOJ128 前缀式计算(栈的运用)
题目信息: http://acm.nyist.net/JudgeOnline/problem.php? pid=128 + 2 * + 3 4 5的值就是 37,详见输入输出. 输入 有多组測试数据, ...
- NYOJ128前缀式计算
前缀式计算 时间限制:1000 ms | 内存限制:65535 KB 难度:3 描述 先说明一下什么是中缀式: 如2+(3+4)*5这种我们最常见的式子就是中缀式. 而把中缀式按运算顺序加上括 ...
- NYOJ 128 前缀式计算
前缀式计算 时间限制:1000 ms | 内存限制:65535 KB 难度:3 描述 先说明一下什么是中缀式: 如2+(3+4)*5这种我们最常见的式子就是中缀式. 而把中缀式按运算顺序加上括 ...
- 前缀式计算 nyoj
题目描述 先说明一下什么是中缀式: 如2+(3+4)*5这种我们最常见的式子就是中缀式. 而把中缀式按运算顺序加上括号就是:(2+((3+4)*5)) 然后把运算符写到括号前面就是+(2 *( +(3 ...
- nyoj-----前缀式计算
前缀式计算 时间限制:1000 ms | 内存限制:65535 KB 难度:3 描述 先说明一下什么是中缀式: 如2+(3+4)*5这种我们最常见的式子就是中缀式. 而把中缀 ...
- NYOJ--128--前缀式计算(表达式求值)
前缀式计算 时间限制:1000 ms | 内存限制:65535 KB 难度:3 描述 先说明一下什么是中缀式: 如2+(3+4)*5这种我们最常见的式子就是中缀式. 而把中缀式按运算顺序加上括 ...
- 大数据入门第十六天——流式计算之storm详解(一)入门与集群安装
一.概述 今天起就正式进入了流式计算.这里先解释一下流式计算的概念 离线计算 离线计算:批量获取数据.批量传输数据.周期性批量计算数据.数据展示 代表技术:Sqoop批量导入数据.HDFS批量存储数据 ...
- 搜索广告与广告网络Demand技术-流式计算平台
流式计算平台-Storm 我们以Storm为例来看流式计算的功能是什么. 下面内容引用自大圆的博客.在Storm中,一个实时应用的计算任务被打包作为Topology发布,这同Hadoop的MapRed ...
- 流式计算与计算抽象化------《Designing Data-Intensive Applications》读书笔记15
上篇的内容,我们探讨了分布式计算中的MapReduce与批处理.所以本篇我们将继续探索分布式计算优化的相关细节,并且分析MapReduce与批处理的局限性,看看流式计算是否能给我们在分布式计算层面提供 ...
随机推荐
- Ubunte 11.4 下安装 SSH遇到的问题
第一次安装报了一堆错,主要是也http 404 not found之类的,搜索了一番怀疑是apt的source list的问题. 网上找到一份替换之,我用的是搜狐的服务器.网址如下: http://b ...
- Resharper
http://baike.baidu.com/link?url=H8DVtrvKV1Cg-Hrz82C6ZiJOUXbi_3BfoROe-RlHhctPna4-BFfglPh2OsR-KmCqRZ7_ ...
- 第11章 集合、比较和转换(C#入门经典第6版)
1.集合 数据有一定的限制,最不能忍受的是一旦创建,数组的大小就固定,不能再添加.而集合则包含了数组所具有的功能,且可以任意添加/删减元素项,还有一些其他 功能. 集合的功能主要通过接口来实现,接口包 ...
- CentOS7.1 使用资源搜集
1.配置java环境 -openjdk* 测试 java -version 2.安装Tomcat8.0.35 点击题目可以参考源网页,但有些代码无法执行,更改如下(亲测可行): 一定要先安装java环 ...
- php基础之二 函数
一.语句:分支语句,循环语句 1.分支语句: 1.1 if $a = 7;if($a == 5){ echo "相等";}else{ echo "不相等";} ...
- 关于exec命令函数
exec执行某命令在命令行下没有问题,但是在php中就出错.这个问题99.99%与权限有关,但是exec执行的命令不会返回错误.一个技巧就是使用管道命令,假设你的exec调用如下: exec('con ...
- Jetty9开发(1)
Version: 9.2.14.v20151106 Jetty : 开发文档 jetty的官网:http://www.eclipse.org/jetty/ Jetty : 开发文档 目录 I. je ...
- android:showAsAction="never"是做什么用的?
安卓开发项目文件中有一个目录叫做menu,里面有tybmain.xmlitem选项里有一句 android:showAsAction = "never"那么这句话是做什么用的呢?原 ...
- 『安全工具』目录扫描 DirBuster AND 御剑
要想熟悉目标网站的体系架构,知道网站有哪些目录是必不可少的 向AWVS,Burp类大型扫描工具也可以进行目录扫描,不过个人感觉远没有专业扫描工具来的简单,实在 0x 01 DirBuster 简介:D ...
- Android 之 Window、WindowManager 与窗口管理
其实在android中真正展示给用户的是window和view,activity在android中所其的作用主要是处理一些逻辑问题,比如生命周期的管理.建立窗口等.在android中,窗口的管理还是比 ...