gcc -o tutorial03 tutorial03.c -lavutil -lavformat -lavcodec -lz -lm \
`sdl-config --cflags --libs`

AUDIO名词解释:
samples:采样,通过PCM来采样,通常样本16bit,PCM的采样精度从14-bit发展到16-bit、18-bit、20-bit直到24-bit
Samples rate:采样率,22.05KHz and 44.1KHz,每秒从连续信号中提取并组成离散信号的采样个数
位速:采样率*样本bit*通道数,CD上未经压缩的音频位速是1411.2 kbit/s(16 位/采样点 × 44100 采样点/秒 × 2 通道)

pFormatCtx->streams[i]->codec->codec_type==CODEC_TYPE_AUDIO , 在for循环找找到audiostream的索引i
AVCodecContext *aCodecCtx=pFormatCtx->streams[audioStream]->codec; 得到音频编码的信息

SDL_AudioSpec  wanted_spec,spec;
wanted_spec.freq = aCodecCtx->sample_rate;   //采样率
wanted_spec.format = AUDIO_S16SYS;
//告诉SDL使用什么格式,S指代signed,16为样本16bit,SYS指代大小端由系统决定
wanted_spec.channels = aCodecCtx->channels; //有多少个通道
wanted_spec.silence = 0; //silence值,由于为signed,故为0
wanted_spec.samples =1024; //缓存大小
wanted_spec.callback = audio_callback; //音频的回调函数

wanted_spec.userdata = aCodecCtx; //给回调函数处理的数据
SDL_OpenAudio(&wanted_spec, &spec)
返回-1则打开失败,spec为NULL则以wanted_spec指定的方式播放,若spec不为NULL,则使用根据硬件改变的spec指定的方式播放,而wanted_spec可以删除

VCodec         *aCodec = avcodec_find_decoder(aCodecCtx->codec_id);
avcodec_open(aCodecCtx, aCodec);
找到解码器,并进行解码

typedef struct PacketQueue {
AVPacketList *first_pkt, *last_pkt;
int nb_packets;        //为包的总数
int size;    //为所有包的大小
SDL_mutex *mutex; //互斥锁
SDL_cond *cond; //条件变量
} PacketQueue;
我们自己创建的用于构建Packet队列的数据结构

AVPacketList
A simple linked list for packets.
AVPacket pkt
AVPacketList * next

void packet_queue_init(PacketQueue *q)
{

memset(q,0,sizeof(PacketQueue));
    q->mutex = SDL_CreateMutex();
    q->cond=SDL_CreateCond();
}

对PacketQueue数据结构进行初始化

用于给PacketQueue数据结构中填入包的函数
int    packet_queue_put(PacketQueue    *q,AVPacket    *pkt)
{
    AVPacketList    *pkt1;
    if(av_dup_packet(pkt)<0)
    {
        return    -1;    //检查是否为NULL,为NULL则自己填充,否则返回-1
    }
    pkt1    =    av_malloc(sizeof(AVPacketList));//给AVPacketList分配空间

if (!pkt1)
        return -1;
    pkt1->pkt = *pkt;
    pkt1->next = NULL;
    SDL_LockMutex(q->mutex); //对PacketQueue进行操作,先锁定互斥变量
    if (!q->last_pkt)
        q->first_pkt = pkt1;
    else
        q->last_pkt->next = pkt1;
    q->last_pkt = pkt1;
    q->nb_packets++;
    q->size += pkt1->pkt.size;
    SDL_CondSignal(q->cond); //发送条件信号,方便等待数据的地方唤醒
    SDL_UnlockMutex(q->mutex); //解锁
    return 0;
}

接收数据
static int packet_queue_get(PacketQueue *q, AVPacket *pkt, int block)
{
    AVPacketList    *pkt1;
    int    ret;
    SDL_LockMutex(q->mutex);//锁定mutex
    for(;;)
    {
        if(quit)
        {
            ret    =-1;
            break;
        }
        pkt1=q->first_pkt;
        if (pkt1) {
            q->first_pkt = pkt1->next;
            if (!q->first_pkt)
                q->last_pkt = NULL;
            q->nb_packets--;
            q->size -= pkt1->pkt.size;
            *pkt = pkt1->pkt;
            av_free(pkt1);
            ret = 1;
            break;
        }
        else if (!block) {
            ret = 0;
            break;
        }
        else {
            SDL_CondWait(q->cond, q->mutex);
        }
    }
    SDL_UnlockMutex(q->mutex);
    return ret;
}
SDL_CondWait先检测是否满足条件,若不满足,解锁mutex,wait,直至被SDL_CondSignal()函数或者SDL_CondBroadcast()函数通知,则锁定mutex并返回

void SDL_PauseAudio(int pause_on)
控制播放与暂停,当pause_on为0时,播放数据,若数据未准备,则播放静音

播放的回调函数,格式必须为void callback(void *userdata, Uint8 *stream, int len),这里的userdata就是我们给到SDL的指针,stream是我们要把声音数据写入的缓冲区指针,len是缓冲区的大小。
void audio_callback(void *userdata, Uint8 *stream, int len) {

struct    mydata    *data=(struct    mydata*)userdata;
AVCodecContext *aCodecCtx = (AVCodecContext *)data->pFormatCtx;
PacketQueue *audioq=data->audioq;
int len1, audio_size;
//静态的数据为了可以多次调用回调函数,而每次不一定处理完了数据
static uint8_t audio_buf[(AVCODEC_MAX_AUDIO_FRAME_SIZE * 3) / 2];
//audio_buf的大小为1.5倍的声音帧的大小以便于有一个比较好的缓冲
static unsigned int audio_buf_size = 0;
static unsigned int audio_buf_index = 0;

while(len > 0) {
    if(audio_buf_index >= audio_buf_size) {
     
      audio_size = audio_decode_frame(aCodecCtx, audio_buf,
                                      sizeof(audio_buf));
      if(audio_size < 0) {
   
    audio_buf_size = 1024;
    memset(audio_buf, 0, audio_buf_size);
      } else {
    audio_buf_size = audio_size;
      }
      audio_buf_index = 0;
    }
    len1 = audio_buf_size - audio_buf_index;
    if(len1 > len)
      len1 = len;
    memcpy(stream, (uint8_t *)audio_buf + audio_buf_index, len1);
    len -= len1;
    stream += len1;
    audio_buf_index += len1;
}
}

对音频数据进行解码,被解码的数据存在audio_buf中,buf_size告诉函数audio_buf缓冲区多大,返回值为解码的数据数量,结束时返回-1,否则返回被解码的bytes数。
int audio_decode_frame(AVCodecContext *aCodecCtx, uint8_t *audio_buf,
                       int buf_size,PacketQueue *audioq) {

static AVPacket pkt;
static uint8_t *audio_pkt_data = NULL;
static int audio_pkt_size = 0;
int len1, data_size;
for(;;) {
    while(audio_pkt_size > 0) {    //该循环从末尾开始
      data_size = buf_size;    //avcodec_decode_audio2必须先指定输出缓冲大小
      len1 = avcodec_decode_audio2(aCodecCtx, (int16_t *)audio_buf, &data_size, audio_pkt_data, audio_pkt_size);

//对数据进行解码
      if(len1 < 0) {
   
    audio_pkt_size = 0;
    break;
      }
      audio_pkt_data += len1;
      audio_pkt_size -= len1; //静态数据,可能包里面有多个帧,故下次调用继续
      if(data_size <= 0) {
   
    continue;
      }
     
      return data_size;
    }
    if(pkt.data)
      av_free_packet(&pkt);
    if(quit) {
      return -1;
    }
    if(packet_queue_get(&audioq, &pkt, 1) < 0) {
      return -1;
    }
    audio_pkt_data = pkt.data;
    audio_pkt_size = pkt.size;
}
}

int avcodec_decode_audio2(AVCodecContext *avctx, int16_t *samples, int *frame_size_ptr, uint8_t *buf, int buf_size)
输出为samples,如果没有可以解码的frame_size_ptr返回0,否则其为被解码的大小。你必须分配frame_size_ptr为samples的缓存大小在你调用该函数时。
返回负数为错误,返回解码的字节数或0指示没有被解码的。
The input buffer must be FF_INPUT_BUFFER_PADDING_SIZE larger than the actual read bytes because some optimized bitstream readers read 32 or 64 bits at once and could read over the end. The end of the input buffer buf should be set to 0 to ensure that no overreading happens for damaged MPEG streams.
Note:You might have to align the input buffer buf and output buffer samples. The alignment requirements depend on the CPU: on some CPUs it isn't necessary at all, on others it won't work at all if not aligned and on others it will work but it will have an impact on performance. In practice, the bitstream should have 4 byte alignment at minimum and all sample data should be 16 byte aligned unless the CPU doesn't need it (AltiVec and SSE do). If the linesize is not a multiple of 16 then there's no sense in aligning the start of the buffer to 16.

SDL音频播放的更多相关文章

  1. FFMPEG + SDL音频播放分析

    目录 [hide] 1 抽象流程: 2 关键实现: 2.1 main()函数 2.2 decode_thread()读取文件信息和音频包 2.3 stream_component_open():设置音 ...

  2. 最简单的基于FFMPEG+SDL的音频播放器 ver2 (采用SDL2.0)

    ===================================================== 最简单的基于FFmpeg的音频播放器系列文章列表: <最简单的基于FFMPEG+SDL ...

  3. 最简单的基于FFMPEG+SDL的音频播放器 ver2 (採用SDL2.0)

    ===================================================== 最简单的基于FFmpeg的音频播放器系列文章列表: <最简单的基于FFMPEG+SDL ...

  4. 最简单的视音频播放示例9:SDL2播放PCM

    本文记录SDL播放音频的技术.在这里使用的版本是SDL2.实际上SDL本身并不提供视音频播放的功能,它只是封装了视音频播放的底层API.在Windows平台下,SDL封装了Direct3D这类的API ...

  5. 最简单的视音频播放示例7:SDL2播放RGB/YUV

    本文记录SDL播放视频的技术.在这里使用的版本是SDL2.实际上SDL本身并不提供视音频播放的功能,它只是封装了视音频播放的底层API.在Windows平台下,SDL封装了Direct3D这类的API ...

  6. ffmpeg音频播放代码示例-avcodec_decode_audio4

    一.概述 最近在学习ffmpeg解码的内容,参考了官方的教程http://dranger.com/ffmpeg/tutorial03.html,结果发现这个音频解码的教程有点问题.参考了各种博客,并同 ...

  7. FFmpeg简易播放器的实现-音频播放

    本文为作者原创,转载请注明出处:https://www.cnblogs.com/leisure_chn/p/10068490.html 基于FFmpeg和SDL实现的简易视频播放器,主要分为读取视频文 ...

  8. 最简单的视音频播放演示样例7:SDL2播放RGB/YUV

    ===================================================== 最简单的视音频播放演示样例系列文章列表: 最简单的视音频播放演示样例1:总述 最简单的视音频 ...

  9. 视频和音频播放的演示最简单的例子9:SDL2广播PCM

    ===================================================== 最简单的视频和音频播放的演示样品系列列表: 最简单的视音频播放演示样例1:总述 最简单的视音 ...

随机推荐

  1. quick-cocos2dx学习笔记

    20140603 下载quick,拉开拉链,跑setup.bat(注意,setup事就是在系统环境变量里加入QUICK_COCOS2DX_ROOT,假设不运行这个的话,启动player时会报找不到fr ...

  2. Android实现真正的ViewPager【平滑过渡】+【循环滚动】!!!顺带还有【末页跳转】。

    实现真正的ViewPager[平滑过渡]+[循环滚动]!!!顺带还有[末页跳转]. 首先呢, 我要对网上常见的3种ViewPager的循环滚动方法做个概述.急需看真正实现方法的同志请选择性忽略下面这一 ...

  3. C语言二叉树的建立与遍历

    二叉树的建立和遍历都要用到递归,先暂时保存一下代码,其中主要是理解递归的思想,其它的就都好理解了.这里是三种遍历方式,其实理解一种,其它的几个就都理解了,就是打印出来的顺序不一样而已.建立和遍历的方式 ...

  4. mui实现支付宝支付功能

    <!DOCTYPE html><html> <head> <meta charset="utf-8"> <title>H ...

  5. mysql数据库安装方法

    前言 MySQL 有三种安装方式:RPM安装.二进制包安装.源码包安装.这3种种方式各有特色,主要特点参考下表.实际应用中,可以根据你所用的主机环境进行优化,选择 最佳的配置值,安装定制更灵活.访问M ...

  6. css07家用电器分类

    1.创建一个html页面 <!DOCTYPE html> <html> <head lang="en"> <meta charset=&q ...

  7. ASP.NET-FineUI开发实践-5

    1.tree的右键事件和单击事件 页面就不写了,准备一个树和一个菜单控件,随便写点啥 JS:注意注释 var menuSettings = F('menuSettings'); var tree = ...

  8. json数组传递到后台controller

    现前台有如下格式的数据需要传递到后台的controller, public class UpdatePara { public int RoleID { get; set; } public List ...

  9. 第一次启动MySQL时报错

    [root@localhost~]#/usr/local/webserver/mysql/bin/mysql_install_db --basedir=/usr/local/webserver/mys ...

  10. java.lang.NumberFormatException: empty String 错误

    原因:前台获取的字符串,后台类型转换,与之对应的实体类中却是Integer类型,所以会报错. 排错情况:1.先检查数据库与实体类中的类型是否一致 2.检查类型转换代码,如果需要加入异常处理