Building a Space Station

Time Limit: 1000MS Memory Limit: 30000K

Total Submissions: 4400 Accepted: 2255

Description



You are a member of the space station engineering team, and are assigned a task in the construction process of the station. You are expected to write a computer program to complete the task.


The space station is made up with a number of units, called cells. All cells are sphere-shaped, but their sizes are not necessarily uniform. Each cell is fixed at its predetermined position shortly after the station is successfully put into its orbit. It is
quite strange that two cells may be touching each other, or even may be overlapping. In an extreme case, a cell may be totally enclosing another one. I do not know how such arrangements are possible.




All the cells must be connected, since crew members should be able to walk from any cell to any other cell. They can walk from a cell A to another cell B, if, (1) A and B are touching each other or overlapping, (2) A and B are connected by a `corridor', or
(3) there is a cell C such that walking from A to C, and also from B to C are both possible. Note that the condition (3) should be interpreted transitively.




You are expected to design a configuration, namely, which pairs of cells are to be connected with corridors. There is some freedom in the corridor configuration. For example, if there are three cells A, B and C, not touching nor overlapping each other, at least
three plans are possible in order to connect all three cells. The first is to build corridors A-B and A-C, the second B-C and B-A, the third C-A and C-B. The cost of building a corridor is proportional to its length. Therefore, you should choose a plan with
the shortest total length of the corridors.



You can ignore the width of a corridor. A corridor is built between points on two cells' surfaces. It can be made arbitrarily long, but of course the shortest one is chosen. Even if two corridors A-B and C-D intersect in space, they are not considered to form
a connection path between (for example) A and C. In other words, you may consider that two corridors never intersect.


Input



The input consists of multiple data sets. Each data set is given in the following format.




n

x1 y1 z1 r1

x2 y2 z2 r2

...

xn yn zn rn



The first line of a data set contains an integer n, which is the number of cells. n is positive, and does not exceed 100.




The following n lines are descriptions of cells. Four values in a line are x-, y- and z-coordinates of the center, and radius (called r in the rest of the problem) of the sphere, in this order. Each value is given by a decimal fraction, with 3 digits after
the decimal point. Values are separated by a space character.



Each of x, y, z and r is positive and is less than 100.0.



The end of the input is indicated by a line containing a zero.

Output



For each data set, the shortest total length of the corridors should be printed, each in a separate line. The printed values should have 3 digits after the decimal point. They may not have an error greater than 0.001.




Note that if no corridors are necessary, that is, if all the cells are connected without corridors, the shortest total length of the corridors is 0.000.


Sample Input



3

10.000 10.000 50.000 10.000

40.000 10.000 50.000 10.000

40.000 40.000 50.000 10.000

2

30.000 30.000 30.000 20.000

40.000 40.000 40.000 20.000

5

5.729 15.143 3.996 25.837

6.013 14.372 4.818 10.671

80.115 63.292 84.477 15.120

64.095 80.924 70.029 14.881

39.472 85.116 71.369 5.553

0

Sample Output



20.000

0.000

73.834

Source

Japan 2003 Domestic

<span style="color:#6600cc;">/*********************************************

        author    :    Grant Yuan
time : 2014.7.31
algorithm : prim
source : POJ 2031 **********************************************/ #include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#include<cmath>
#define INF 0x3fffffff
#define MAX 103 using namespace std; struct edge{double x,y,z,r;};
double cost[MAX][MAX];
int n;
edge e[MAX];
double ans;
double mincost[MAX];
bool used[MAX]; void prim()
{
ans=0;
memset(used,0,sizeof(used));
for(int i=1;i<=n;i++)
{
mincost[i]=INF;;
}
mincost[1]=0;
while(1){
int v=-1;
for(int i=1;i<=n;i++)
{
if(!used[i]&&(v==-1||mincost[i]<mincost[v]))
v=i;}
if(v==-1) break;
used[v]=true;
ans+=mincost[v];
for(int i=1;i<=n;i++)
{
mincost[i]=min(mincost[i],cost[v][i]);
} } } int main()
{
while(1){
scanf("%d",&n);
if(!n) break;
for(int i=1;i<=n;i++)
{
scanf("%lf%lf%lf%lf",&e[i].x,&e[i].y,&e[i].z,&e[i].r); }
for(int i=1;i<=n;i++)
for(int j=i+1;j<=n;j++)
{
cost[i][j]=INF;
cost[i][j]=cost[j][i]=sqrt((e[i].x-e[j].x)*(e[i].x-e[j].x)+(e[i].y-e[j].y)*(e[i].y-e[j].y)+(e[i].z-e[j].z)*(e[i].z-e[j].z))-e[i].r-e[j].r;
if(cost[i][j]<0)
cost[i][j]=cost[j][i]=0;
}
prim();
printf("%.3f\n",ans);
}
return 0; } </span>

POJ 2031 prim的更多相关文章

  1. Building a Space Station POJ - 2031

    Building a Space Station POJ - 2031 You are a member of the space station engineering team, and are ...

  2. Building a Space Station POJ 2031 【最小生成树 prim】

    http://poj.org/problem?id=2031 Description You are a member of the space station engineering team, a ...

  3. Prim POJ 2031 Building a Space Station

    题目传送门 题意:给出n个三维空间的球体,球体是以圆心坐标+半径来表示的,要求在球面上建桥使所有的球联通,求联通所建桥的最小长度. 分析:若两点距离大于两半径和的长度,那么距离就是两点距离 - 半径和 ...

  4. POJ 2031 Building a Space Station (prim裸题)

    Description You are a member of the space station engineering team, and are assigned a task in the c ...

  5. POJ - 2031 Building a Space Station(计算几何+最小生成树)

    http://poj.org/problem?id=2031 题意 给出三维坐标系下的n个球体,求把它们联通的最小代价. 分析 最小生成树加上一点计算几何.建图,若两球体原本有接触,则边权为0:否则边 ...

  6. (最小生成树) Building a Space Station -- POJ -- 2031

    链接: http://poj.org/problem?id=2031 Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 6011 ...

  7. POJ 2421(prim)

    http://poj.org/problem?id=2421 这个题和poj1258是一样的,只要在1258的基础上那么几行代码,就可以A,水. 题意:还是n连通问题,和1258不同的就是这个还有几条 ...

  8. Poj(1251),Prim字符的最小生成树

    题目链接:http://poj.org/problem?id=1251 字符用%s好了,方便一点. #include <stdio.h> #include <string.h> ...

  9. poj 2031 Building a Space Station(prime )

    这个题要交c++, 因为prime的返回值错了,改了一会 题目:http://poj.org/problem?id=2031 题意:就是给出三维坐标系上的一些球的球心坐标和其半径,搭建通路,使得他们能 ...

随机推荐

  1. 工作流管理系统 jBPM

    工作流管理系统 jBPM 运行环境: 授权方式:BSD 软件大小:M 下载量:589 更新日期:2014-04-04 来源地址: 联系作者:Linux     jBpm是一个灵活可扩展的工作流管理系统 ...

  2. DFS(White-Gray-Black)

    参考<数据结构与算法> 本书在复杂深度优先遍历图时,采用三种颜色标记图中节点 1 white 表示未访问 2 gray 表示已经正在访问,其相邻节点 3 black 表示该节点所有的相邻节 ...

  3. learn C on the mac 读后笔记

    phper 学习c的一点笔记.参考资料 learn C on the mac 图书地址--http://pan.baidu.com/s/1eQBW2hO 源码地址--http://pan.baidu. ...

  4. C++堆和栈的比较(7个区别)

    基础知识: 堆 栈是一种简单的数据结构,是一种只允许在其一端进行插入或删除的线性表.允许插入或删除操作的一端称为栈顶,另一端称为栈底,对堆栈的插入和删除操作被称 为入栈和出栈.有一组CPU指令可以实现 ...

  5. cocos2dx进阶学习之屏幕适配

    背景 在学习cocos2dx时,我们在main函数中发现一句代码, #include "main.h" #include "AppDelegate.h" #in ...

  6. paip.php-gtk 桌面程序 helloworld总结

    paip.php-gtk 桌面程序 helloworld总结 作者Attilax ,  EMAIL:1466519819@qq.com  来源:attilax的专栏 地址:http://blog.cs ...

  7. POJ 1159 回文LCS滚动数组优化

    详细解题报告可以看这个PPT 这题如果是直接开int 5000 * 5000  的空间肯定会MLE,优化方法是采用滚动数组. 原LCS转移方程 : dp[i][j] = dp[i - 1][j] + ...

  8. HDU 5012 Dice DFS

    简单DFS //#pragma comment(linker, "/STACK:16777216") //for c++ Compiler #include <stdio.h ...

  9. (Problem 10)Summation of primes

    The sum of the primes below 10 is 2 + 3 + 5 + 7 = 17. Find the sum of all the primes below two milli ...

  10. 转: AlphaImageLoader简介

    Microsoft.AlphaImageLoader是IE滤镜的一种,其主要作用就是对图片进行透明处理.虽然FireFox和IE7以上的IE浏览器已经支持透明的PNG图片,但是就IE5-IE6而言还是 ...