Building a Space Station

Time Limit: 1000MS Memory Limit: 30000K

Total Submissions: 4400 Accepted: 2255

Description



You are a member of the space station engineering team, and are assigned a task in the construction process of the station. You are expected to write a computer program to complete the task.


The space station is made up with a number of units, called cells. All cells are sphere-shaped, but their sizes are not necessarily uniform. Each cell is fixed at its predetermined position shortly after the station is successfully put into its orbit. It is
quite strange that two cells may be touching each other, or even may be overlapping. In an extreme case, a cell may be totally enclosing another one. I do not know how such arrangements are possible.




All the cells must be connected, since crew members should be able to walk from any cell to any other cell. They can walk from a cell A to another cell B, if, (1) A and B are touching each other or overlapping, (2) A and B are connected by a `corridor', or
(3) there is a cell C such that walking from A to C, and also from B to C are both possible. Note that the condition (3) should be interpreted transitively.




You are expected to design a configuration, namely, which pairs of cells are to be connected with corridors. There is some freedom in the corridor configuration. For example, if there are three cells A, B and C, not touching nor overlapping each other, at least
three plans are possible in order to connect all three cells. The first is to build corridors A-B and A-C, the second B-C and B-A, the third C-A and C-B. The cost of building a corridor is proportional to its length. Therefore, you should choose a plan with
the shortest total length of the corridors.



You can ignore the width of a corridor. A corridor is built between points on two cells' surfaces. It can be made arbitrarily long, but of course the shortest one is chosen. Even if two corridors A-B and C-D intersect in space, they are not considered to form
a connection path between (for example) A and C. In other words, you may consider that two corridors never intersect.


Input



The input consists of multiple data sets. Each data set is given in the following format.




n

x1 y1 z1 r1

x2 y2 z2 r2

...

xn yn zn rn



The first line of a data set contains an integer n, which is the number of cells. n is positive, and does not exceed 100.




The following n lines are descriptions of cells. Four values in a line are x-, y- and z-coordinates of the center, and radius (called r in the rest of the problem) of the sphere, in this order. Each value is given by a decimal fraction, with 3 digits after
the decimal point. Values are separated by a space character.



Each of x, y, z and r is positive and is less than 100.0.



The end of the input is indicated by a line containing a zero.

Output



For each data set, the shortest total length of the corridors should be printed, each in a separate line. The printed values should have 3 digits after the decimal point. They may not have an error greater than 0.001.




Note that if no corridors are necessary, that is, if all the cells are connected without corridors, the shortest total length of the corridors is 0.000.


Sample Input



3

10.000 10.000 50.000 10.000

40.000 10.000 50.000 10.000

40.000 40.000 50.000 10.000

2

30.000 30.000 30.000 20.000

40.000 40.000 40.000 20.000

5

5.729 15.143 3.996 25.837

6.013 14.372 4.818 10.671

80.115 63.292 84.477 15.120

64.095 80.924 70.029 14.881

39.472 85.116 71.369 5.553

0

Sample Output



20.000

0.000

73.834

Source

Japan 2003 Domestic

<span style="color:#6600cc;">/*********************************************

        author    :    Grant Yuan
time : 2014.7.31
algorithm : prim
source : POJ 2031 **********************************************/ #include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#include<cmath>
#define INF 0x3fffffff
#define MAX 103 using namespace std; struct edge{double x,y,z,r;};
double cost[MAX][MAX];
int n;
edge e[MAX];
double ans;
double mincost[MAX];
bool used[MAX]; void prim()
{
ans=0;
memset(used,0,sizeof(used));
for(int i=1;i<=n;i++)
{
mincost[i]=INF;;
}
mincost[1]=0;
while(1){
int v=-1;
for(int i=1;i<=n;i++)
{
if(!used[i]&&(v==-1||mincost[i]<mincost[v]))
v=i;}
if(v==-1) break;
used[v]=true;
ans+=mincost[v];
for(int i=1;i<=n;i++)
{
mincost[i]=min(mincost[i],cost[v][i]);
} } } int main()
{
while(1){
scanf("%d",&n);
if(!n) break;
for(int i=1;i<=n;i++)
{
scanf("%lf%lf%lf%lf",&e[i].x,&e[i].y,&e[i].z,&e[i].r); }
for(int i=1;i<=n;i++)
for(int j=i+1;j<=n;j++)
{
cost[i][j]=INF;
cost[i][j]=cost[j][i]=sqrt((e[i].x-e[j].x)*(e[i].x-e[j].x)+(e[i].y-e[j].y)*(e[i].y-e[j].y)+(e[i].z-e[j].z)*(e[i].z-e[j].z))-e[i].r-e[j].r;
if(cost[i][j]<0)
cost[i][j]=cost[j][i]=0;
}
prim();
printf("%.3f\n",ans);
}
return 0; } </span>

POJ 2031 prim的更多相关文章

  1. Building a Space Station POJ - 2031

    Building a Space Station POJ - 2031 You are a member of the space station engineering team, and are ...

  2. Building a Space Station POJ 2031 【最小生成树 prim】

    http://poj.org/problem?id=2031 Description You are a member of the space station engineering team, a ...

  3. Prim POJ 2031 Building a Space Station

    题目传送门 题意:给出n个三维空间的球体,球体是以圆心坐标+半径来表示的,要求在球面上建桥使所有的球联通,求联通所建桥的最小长度. 分析:若两点距离大于两半径和的长度,那么距离就是两点距离 - 半径和 ...

  4. POJ 2031 Building a Space Station (prim裸题)

    Description You are a member of the space station engineering team, and are assigned a task in the c ...

  5. POJ - 2031 Building a Space Station(计算几何+最小生成树)

    http://poj.org/problem?id=2031 题意 给出三维坐标系下的n个球体,求把它们联通的最小代价. 分析 最小生成树加上一点计算几何.建图,若两球体原本有接触,则边权为0:否则边 ...

  6. (最小生成树) Building a Space Station -- POJ -- 2031

    链接: http://poj.org/problem?id=2031 Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 6011 ...

  7. POJ 2421(prim)

    http://poj.org/problem?id=2421 这个题和poj1258是一样的,只要在1258的基础上那么几行代码,就可以A,水. 题意:还是n连通问题,和1258不同的就是这个还有几条 ...

  8. Poj(1251),Prim字符的最小生成树

    题目链接:http://poj.org/problem?id=1251 字符用%s好了,方便一点. #include <stdio.h> #include <string.h> ...

  9. poj 2031 Building a Space Station(prime )

    这个题要交c++, 因为prime的返回值错了,改了一会 题目:http://poj.org/problem?id=2031 题意:就是给出三维坐标系上的一些球的球心坐标和其半径,搭建通路,使得他们能 ...

随机推荐

  1. JPEG概述和头分析(C源码)

    原创文章,转载请注明:JPEG概述和头分析(C源码)  By Lucio.Yang 部分内容来自:w285868925,JPEG压缩标准 1.JPEG概述 JPEG是一个压缩标准,又可分为标准 JPE ...

  2. HTML5 事件

    下面的表格列出了可插入 HTML 5 元素中以定义事件行为的标准事件属性. Window 事件属性 - Window Event Attributes 表单事件 - Form Events 键盘事件 ...

  3. C# Programming Study #1

    引用的时候需要在参数和使用的时候加上 ref 关键字 static bool addnum (ref int val) //引用 { ++val; return true; } 参数数组的概念,可以接 ...

  4. java实现电脑远程控制完整源代码(转)

    Java JDK1.4 的Robot对象,该对象可以完成屏幕图像截取操作,控制鼠标,键盘,如此便可以轻而易举地实现远程服务器的控制.本文向大家介绍如何用Java Robot对象实现远程服务器的控制,并 ...

  5. 1104--DNA排序

    问题描述: 逆序数可以用来描述一个序列混乱程度的量.例如,“DAABEC”的逆序数为5,其中D大于它右边的4个数·,E大于它右边的1的个数,4+1=5,又如,“ZWQM”的逆序数为3+2+1+0=6. ...

  6. HDU4648+Easy

    N^2都能过!!!!!!! /* Easy */ #include<stdio.h> #include<string.h> #include<stdlib.h> # ...

  7. leetcode先刷_Search in Rotated Sorted Array II

    上一页下一页,找到相同的旋转阵列的问题.假设数组元素一再怎么办呢?会发生什么? 我给大家举一个极端的例子.如果是这样的阵列中的元件.1,1,2,1,1,1,1,我们想看看这个数组2,刚开始A[midd ...

  8. [Swust OJ 191]--迷宫逃离(打表搜索)

      题目链接:http://acm.swust.edu.cn/problem/191/ Time limit(ms): 1000 Memory limit(kb): 65535   江鸟突然想到了一个 ...

  9. java 如何自定义异常 用代码展示 真心靠谱

    先建两个自定义的异常类 ChushufuException类 class ChushufuException extends Exception { public ChushufuException( ...

  10. POJ 1041 John's trip 无向图的【欧拉回路】路径输出

    欧拉回路第一题TVT 本题的一个小技巧在于: [建立一个存放点与边关系的邻接矩阵] 1.先判断是否存在欧拉路径 无向图: 欧拉回路:连通 + 所有定点的度为偶数 欧拉路径:连通 + 除源点和终点外都为 ...