Building a Space Station

Time Limit: 1000MS Memory Limit: 30000K

Total Submissions: 4400 Accepted: 2255

Description



You are a member of the space station engineering team, and are assigned a task in the construction process of the station. You are expected to write a computer program to complete the task.


The space station is made up with a number of units, called cells. All cells are sphere-shaped, but their sizes are not necessarily uniform. Each cell is fixed at its predetermined position shortly after the station is successfully put into its orbit. It is
quite strange that two cells may be touching each other, or even may be overlapping. In an extreme case, a cell may be totally enclosing another one. I do not know how such arrangements are possible.




All the cells must be connected, since crew members should be able to walk from any cell to any other cell. They can walk from a cell A to another cell B, if, (1) A and B are touching each other or overlapping, (2) A and B are connected by a `corridor', or
(3) there is a cell C such that walking from A to C, and also from B to C are both possible. Note that the condition (3) should be interpreted transitively.




You are expected to design a configuration, namely, which pairs of cells are to be connected with corridors. There is some freedom in the corridor configuration. For example, if there are three cells A, B and C, not touching nor overlapping each other, at least
three plans are possible in order to connect all three cells. The first is to build corridors A-B and A-C, the second B-C and B-A, the third C-A and C-B. The cost of building a corridor is proportional to its length. Therefore, you should choose a plan with
the shortest total length of the corridors.



You can ignore the width of a corridor. A corridor is built between points on two cells' surfaces. It can be made arbitrarily long, but of course the shortest one is chosen. Even if two corridors A-B and C-D intersect in space, they are not considered to form
a connection path between (for example) A and C. In other words, you may consider that two corridors never intersect.


Input



The input consists of multiple data sets. Each data set is given in the following format.




n

x1 y1 z1 r1

x2 y2 z2 r2

...

xn yn zn rn



The first line of a data set contains an integer n, which is the number of cells. n is positive, and does not exceed 100.




The following n lines are descriptions of cells. Four values in a line are x-, y- and z-coordinates of the center, and radius (called r in the rest of the problem) of the sphere, in this order. Each value is given by a decimal fraction, with 3 digits after
the decimal point. Values are separated by a space character.



Each of x, y, z and r is positive and is less than 100.0.



The end of the input is indicated by a line containing a zero.

Output



For each data set, the shortest total length of the corridors should be printed, each in a separate line. The printed values should have 3 digits after the decimal point. They may not have an error greater than 0.001.




Note that if no corridors are necessary, that is, if all the cells are connected without corridors, the shortest total length of the corridors is 0.000.


Sample Input



3

10.000 10.000 50.000 10.000

40.000 10.000 50.000 10.000

40.000 40.000 50.000 10.000

2

30.000 30.000 30.000 20.000

40.000 40.000 40.000 20.000

5

5.729 15.143 3.996 25.837

6.013 14.372 4.818 10.671

80.115 63.292 84.477 15.120

64.095 80.924 70.029 14.881

39.472 85.116 71.369 5.553

0

Sample Output



20.000

0.000

73.834

Source

Japan 2003 Domestic

<span style="color:#6600cc;">/*********************************************

        author    :    Grant Yuan
time : 2014.7.31
algorithm : prim
source : POJ 2031 **********************************************/ #include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#include<cmath>
#define INF 0x3fffffff
#define MAX 103 using namespace std; struct edge{double x,y,z,r;};
double cost[MAX][MAX];
int n;
edge e[MAX];
double ans;
double mincost[MAX];
bool used[MAX]; void prim()
{
ans=0;
memset(used,0,sizeof(used));
for(int i=1;i<=n;i++)
{
mincost[i]=INF;;
}
mincost[1]=0;
while(1){
int v=-1;
for(int i=1;i<=n;i++)
{
if(!used[i]&&(v==-1||mincost[i]<mincost[v]))
v=i;}
if(v==-1) break;
used[v]=true;
ans+=mincost[v];
for(int i=1;i<=n;i++)
{
mincost[i]=min(mincost[i],cost[v][i]);
} } } int main()
{
while(1){
scanf("%d",&n);
if(!n) break;
for(int i=1;i<=n;i++)
{
scanf("%lf%lf%lf%lf",&e[i].x,&e[i].y,&e[i].z,&e[i].r); }
for(int i=1;i<=n;i++)
for(int j=i+1;j<=n;j++)
{
cost[i][j]=INF;
cost[i][j]=cost[j][i]=sqrt((e[i].x-e[j].x)*(e[i].x-e[j].x)+(e[i].y-e[j].y)*(e[i].y-e[j].y)+(e[i].z-e[j].z)*(e[i].z-e[j].z))-e[i].r-e[j].r;
if(cost[i][j]<0)
cost[i][j]=cost[j][i]=0;
}
prim();
printf("%.3f\n",ans);
}
return 0; } </span>

POJ 2031 prim的更多相关文章

  1. Building a Space Station POJ - 2031

    Building a Space Station POJ - 2031 You are a member of the space station engineering team, and are ...

  2. Building a Space Station POJ 2031 【最小生成树 prim】

    http://poj.org/problem?id=2031 Description You are a member of the space station engineering team, a ...

  3. Prim POJ 2031 Building a Space Station

    题目传送门 题意:给出n个三维空间的球体,球体是以圆心坐标+半径来表示的,要求在球面上建桥使所有的球联通,求联通所建桥的最小长度. 分析:若两点距离大于两半径和的长度,那么距离就是两点距离 - 半径和 ...

  4. POJ 2031 Building a Space Station (prim裸题)

    Description You are a member of the space station engineering team, and are assigned a task in the c ...

  5. POJ - 2031 Building a Space Station(计算几何+最小生成树)

    http://poj.org/problem?id=2031 题意 给出三维坐标系下的n个球体,求把它们联通的最小代价. 分析 最小生成树加上一点计算几何.建图,若两球体原本有接触,则边权为0:否则边 ...

  6. (最小生成树) Building a Space Station -- POJ -- 2031

    链接: http://poj.org/problem?id=2031 Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 6011 ...

  7. POJ 2421(prim)

    http://poj.org/problem?id=2421 这个题和poj1258是一样的,只要在1258的基础上那么几行代码,就可以A,水. 题意:还是n连通问题,和1258不同的就是这个还有几条 ...

  8. Poj(1251),Prim字符的最小生成树

    题目链接:http://poj.org/problem?id=1251 字符用%s好了,方便一点. #include <stdio.h> #include <string.h> ...

  9. poj 2031 Building a Space Station(prime )

    这个题要交c++, 因为prime的返回值错了,改了一会 题目:http://poj.org/problem?id=2031 题意:就是给出三维坐标系上的一些球的球心坐标和其半径,搭建通路,使得他们能 ...

随机推荐

  1. Ecmall系统自带的分页功能使用

    在控制器如果没有定义相关模型,直接使用sql语句的话,直接使用如下语句. 即: public $db; $this->db = &db(); //然后开始使用分页类 $sql='sele ...

  2. Objective-c 截取子字符串

    NSString类中提供了这样三个方法用于获取子字符串: – substringFromIndex: – substringWithRange: – substringToIndex: 它们该怎么使用 ...

  3. QString::toLocal8Bit得听QTextCodec::codecForLocale的

    这个函数用了这么久,到今天程序出错才发现这个问题...也就是说,必须设置QTextCodec *codec = QTextCodec::codecForName("System") ...

  4. Collection用法

    Queue接口与List.Set同一级别,都是继承了Collection接口.LinkedList实现了Queue接 口.在队列这种数据结构中,最先插入的元素将是最先被删除的元素:反之最后插入的元素将 ...

  5. wiki oi 3115高精度练习之减法

    题目描述 Description 给出两个正整数A和B,计算A-B的值.保证A和B的位数不超过500位. 输入描述 Input Description 读入两个用空格隔开的正整数 输出描述 Outpu ...

  6. centOS下恢复win8引导

    正题(非原创): shutdown两次以后确信我的win8引导没有了 百度后找到一个修改grub.cfg文件的方法 这个文件在普通用户下是没有修改的权利的 要在sudo su之后用root权限 vi ...

  7. poj 1256 Anagram(dfs)

    题目链接:http://poj.org/problem?id=1256 思路分析:该题为含有重复元素的全排列问题:由于题目中字符长度较小,采用暴力法解决. 代码如下: #include <ios ...

  8. Jenkins Maven打包出错异常的解决方法

    Jenkins是一个很好用的打包部署工具,实现一键式部署项目,在项目处于测试阶段或者对于运维人员来讲是非常方便的一个工具. 但是最近使用Jenkins部署项目时老是出错,主要是maven打包的问题,错 ...

  9. ios8 swift开发:显示变量的类名称

    var ivar = [:] ivar.className // __NSDictionaryI var i = 1 i.className // error: 'Int' does not have ...

  10. ceph存储之查找对象

    对象存储(而非块存储): 要把对象存入ceph集群,客户端必须做到: 1.指定对象名 2.指定存储池 Ceph客户端检出最新集群运行图,客户端用CRUSH算法动态地计算出如何把对象映射到归置组.然后计 ...