(Problem 36)Double-base palindromes
The decimal number, 585 = 10010010012(binary), is palindromic in both bases.
Find the sum of all numbers, less than one million, which are palindromic in base 10 and base 2.
(Please note that the palindromic number, in either base, may not include leading zeros.)
题目大意:
十进制数字585 = 10010010012 (二进制),可以看出在十进制和二进制下都是回文(从左向右读和从右向左读都一样)。
求100万以下所有在十进制和二进制下都是回文的数字之和。
(注意在两种进制下的数字都不包括最前面的0)
//(Problem 36)Double-base palindromes
// Completed on Thu, 31 Oct 2013, 13:12
// Language: C
//
// 版权所有(C)acutus (mail: acutus@126.com)
// 博客地址:http://www.cnblogs.com/acutus/
#include<stdio.h>
#include<stdbool.h> bool test(int *a, int n)
{
bool flag = true;
for(int i = ; i < n/; i++) {
if(a[i] != a[n-i-]) {
flag = false;
break;
}
}
return flag;
} bool palindromes(int n, int base) //判断整数n在基为base时是否为回文数
{
int a[];
int i = ;
while(n) {
a[i++] = n % base;
n /= base;
}
return test(a,i);
} int main(void)
{
int sum = ;
for(int i = ; i <= ; i += )
{
if(palindromes(i, ) && palindromes(i, ))
sum += i;
}
printf("%d\n", sum);
return ;
}
|
Answer:
|
872187 |
(Problem 36)Double-base palindromes的更多相关文章
- (Problem 42)Coded triangle numbers
The nth term of the sequence of triangle numbers is given by, tn = ½n(n+1); so the first ten triangl ...
- (Problem 70)Totient permutation
Euler's Totient function, φ(n) [sometimes called the phi function], is used to determine the number ...
- (Problem 29)Distinct powers
Consider all integer combinations ofabfor 2a5 and 2b5: 22=4, 23=8, 24=16, 25=32 32=9, 33=27, 34=81, ...
- (Problem 73)Counting fractions in a range
Consider the fraction, n/d, where n and d are positive integers. If nd and HCF(n,d)=1, it is called ...
- (Problem 41)Pandigital prime
We shall say that an n-digit number is pandigital if it makes use of all the digits 1 to n exactly o ...
- (Problem 74)Digit factorial chains
The number 145 is well known for the property that the sum of the factorial of its digits is equal t ...
- (Problem 46)Goldbach's other conjecture
It was proposed by Christian Goldbach that every odd composite number can be written as the sum of a ...
- (Problem 72)Counting fractions
Consider the fraction, n/d, where n and d are positive integers. If nd and HCF(n,d)=1, it is called ...
- (Problem 53)Combinatoric selections
There are exactly ten ways of selecting three from five, 12345: 123, 124, 125, 134, 135, 145, 234, 2 ...
随机推荐
- POJ 1721 CARDS(置换群)
[题目链接] http://poj.org/problem?id=1721 [题目大意] 给出a[i]=a[a[i]]变换s次后的序列,求原序列 [题解] 置换存在循环节,因此我们先求出循环节长度,置 ...
- oracle db_unnqiue_name db_name sid_name instance_name service_name
- ExpandableListView(一)替换系统默认的箭头
很多朋友可能在android开发中,用过ExpandableListView这个组件,这个组件功能强大,比传统的ListView有好多优势.然而在开发中,我相信有好多人,包括我个人都会遇到下面的一些问 ...
- 12.04 如何更专业的使用Chrome开发者工具
顾名思义Chrome开发工具就是一个工具,它允许Web开发人员可以通过浏览器应用程序干预和操作Web页面,也可以通过这个工具调试和测试Web页面或Web应用程序.有了这个工具,你可以做很多有趣的事情: ...
- Oracle数据库 ORA-01555 快照过旧 (undo表空间:撤销表空间)
UNDO表空间用于存放UNDO数据,当执行DML操作时,oracle会将这些操作的旧数据写入到UNDO段,以保证可以回滚或者一致读等,而临时表空间主要用来做查询和存放一些缓冲区数据.你听说UNDO也是 ...
- Android导航栏ActionBar的具体分析
尊重原创:http://blog.csdn.net/yuanzeyao/article/details/39378825 关于ActionBar,相信大家并不陌生,可是真正能够熟练使用的也不是许多,这 ...
- java动手动脑课后思考题
public class SquareInt { public static void main(String[] args) { int result; ; x <= ; x++) { res ...
- JavaSE复习日记 : 算是个小前言吧
/* * Java也学了好久了,抽个时间整理了一下课堂笔记,也有些是我刚开始学会犯的一些错误.在这里浅谈一下JavaSE的基础内容,对我来说也是一种不错的复习方式. * * 那好,对于初学者来说,学习 ...
- Append和AppendTo
Append和AppendTo Append向标签中追加内容 AppendTo把所有匹配的元素追加到元素集合中
- 【转载】关于Python脚本开头两行的:#!/usr/bin/python和# -*- coding: utf-8 -*-的作用 – 指定文件编码类型
1.#!/usr/bin/python 是用来说明脚本语言是 python 的 是要用 /usr/bin下面的程序(工具)python,这个解释器,来解释 python 脚本,来运行 python 脚 ...