推导:

设d=gcd(i,j)

利用莫比乌斯函数的性质

令sum(x,y)=(x*(x+1)/2)*(y*(y+1)/2)

令T=d*t

设f(T)=

T可以分块。又由于μ是积性函数,积性函数的约束和仍是积性函数,所以f也是积性函数,可以O(n)线性筛求得。总时间复杂度为

具体筛法看代码。

代码:

#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
#define mod 100000009
#define _min(a,b) a>b?b:a
#define ll long long
inline char nc(){
static char buf[],*p1=buf,*p2=buf;
if(p1==p2){
p2=(p1=buf)+fread(buf,,,stdin);
if(p1==p2)return EOF;
}
return *p1++;
}
inline void read(int& x){
char c=nc();
for(;c<''||c>'';c=nc());
for(x=;c>=''&&c<='';x=x*+c-,c=nc());
}
int len;
char s[];
inline void print(ll x){
if(!x){
putchar('');putchar('\n');
return;
}
for(len=;x;x/=)s[++len]=x%;
for(;len;len--)putchar(s[len]+);
putchar('\n');
}
inline int sum(ll x,ll y){
return (x*(x+)/%mod)*(y*(y+)/%mod)%mod;
}
int T,i,j,k,n,m,ma,num,p[],x,a[],b[],ans;
ll f[];
bool v[];
int main()
{
read(T);
for(i=;i<=T;i++){
read(a[i]);read(b[i]);
if(a[i]>b[i]){k=a[i];a[i]=b[i];b[i]=k;}
if(a[i]>ma)ma=a[i];
}
f[]=;
for(i=;i<=ma;i++){
if(!v[i]){
p[++num]=i;
f[i]=-(1LL*i*(i-)%mod);
}
for(j=;j<=num&&p[j]*i<=ma;j++){
v[p[j]*i]=;
if(i%p[j])f[i*p[j]]=f[i]*f[p[j]]%mod;else{
f[i*p[j]]=f[i]*p[j]%mod;
break;
}
}
}
for(i=;i<=ma;i++)f[i]=(f[i]+f[i-])%mod;
for(k=;k<=T;k++){
ans=;
for(i=;i<=a[k];i=j+){
j=_min(a[k]/(a[k]/i),b[k]/(b[k]/i));
ans=(ans+(f[j]-f[i-])*sum(a[k]/i,b[k]/i)%mod)%mod;
}
print((ans+mod)%mod);
}
return ;
}

bzoj2693

bzoj2693--莫比乌斯反演+积性函数线性筛的更多相关文章

  1. BZOJ 2694: Lcm 莫比乌斯反演 + 积性函数 + 线性筛 + 卡常

    求 $\sum_{i=1}^{n}\sum_{j=1}^{m}lcm(i,j)\mu(gcd(i,j))^2$   $\Rightarrow \sum_{d=1}^{n}\mu(d)^2\sum_{i ...

  2. 积性函数&线性筛&欧拉函数&莫比乌斯函数&因数个数&约数个数和

    只会搬运YL巨巨的博客 积性函数 定义 积性函数:对于任意互质的整数a和b有性质f(ab)=f(a)f(b)的数论函数. 完全积性函数:对于任意整数a和b有性质f(ab)=f(a)f(b)的数论函数 ...

  3. [模板] 积性函数 && 线性筛

    积性函数 数论函数指的是定义在正整数集上的实或复函数. 积性函数指的是当 \((a,b)=1\) 时, 满足 \(f(a*b)=f(a)*f(b)\) 的数论函数. 完全积性函数指的是在任何情况下, ...

  4. BZOJ4804 欧拉心算(莫比乌斯反演+欧拉函数+线性筛)

    一通套路后得Σφ(d)μ(D/d)⌊n/D⌋2.显然整除分块,问题在于怎么快速计算φ和μ的狄利克雷卷积.积性函数的卷积还是积性函数,那么线性筛即可.因为μ(pc)=0 (c>=2),所以f(pc ...

  5. BZOJ 2693: jzptab 莫比乌斯反演 + 积性函数 +筛法

    Code: #include<bits/stdc++.h> #define ll long long #define M 10001000 #define maxn 10200100 #d ...

  6. Bzoj 2818: Gcd 莫比乌斯,分块,欧拉函数,线性筛

    2818: Gcd Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 3241  Solved: 1437[Submit][Status][Discuss ...

  7. 莫比乌斯反演/线性筛/积性函数/杜教筛/min25筛 学习笔记

    最近重新系统地学了下这几个知识点,以前没发现他们的联系,这次总结一下. 莫比乌斯反演入门:https://blog.csdn.net/litble/article/details/72804050 线 ...

  8. P6222 「简单题」加强版 莫比乌斯反演 线性筛积性函数

    LINK:简单题 以前写过弱化版的 不过那个实现过于垃圾 少预处理了一个东西. 这里写一个实现比较精细了. 最后可推出式子:\(\sum_{T=1}^nsum(\frac{n}{T})\sum_{x| ...

  9. bzoj 2693: jzptab 线性筛积性函数

    2693: jzptab Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 444  Solved: 174[Submit][Status][Discus ...

随机推荐

  1. Golang 编写的图片压缩程序,质量、尺寸压缩,批量、单张压缩

    目录: 前序 效果图 简介 全部代码 前序: 接触 golang 不久,一直是边学边做,边总结,深深感到这门语言的魅力,等下要跟大家分享是最近项目 服务端 用到的图片压缩程序,我单独分离了出来,做成了 ...

  2. 创建APPID&&部署服务端教程

    创建APPID&&部署服务端 一.创建APPID 1.打开https://console.developers.google.com ,左击顶部Project,然后左击创建项目 2.输 ...

  3. [开发笔记]yum错误

    yum 错误TypeError: rpmdb open failed 解决办法 是因为RPM数据库出现损坏导致的,它导致所有的软件的升级.安装甚至是删除都会出现问题,终端出现乱码,YUMEX也用不成, ...

  4. CSharpGL(33)使用uniform块来优化对uniform变量的读写

    CSharpGL(33)使用uniform块来优化对uniform变量的读写 +BIT祝威+悄悄在此留下版了个权的信息说: Uniform块 如果shader程序变得比较复杂,那么其中用到的unifo ...

  5. python 数据类型 ---文件一

    1.文件的操作流程: 打开(open), 操作(read,write), 关闭(close) 下面分别用三种方式打开文件,r,w,a 模式 . "a"模式将不会覆盖原来的文件内容, ...

  6. Visual Studio Code——Angular2 Hello World 之 2.0

    最近看到一篇用Visual Studio Code开发Angular2的文章,也是一篇入门教程,地址为:使用Visual Studio Code開發Angular 2專案.这里按部就班的做了一遍,感觉 ...

  7. JAVA设计模式之模板模式

    在阎宏博士的<JAVA与模式>一书中开头是这样描述模板方法(Template Method)模式的: 模板方法模式是类的行为模式.准备一个抽象类,将部分逻辑以具体方法以及具体构造函数的形式 ...

  8. welcome to my cnblog

    博客园总算开通了,以后就分享自己的东西,和大家交流.

  9. Python3中的字符串函数学习总结

    这篇文章主要介绍了Python3中的字符串函数学习总结,本文讲解了格式化类方法.查找 & 替换类方法.拆分 & 组合类方法等内容,需要的朋友可以参考下. Sequence Types ...

  10. 浅谈跨域以及WebService对跨域的支持

    跨域问题来源于JavaScript的同源策略,即只有 协议+主机名+端口号 (如存在)相同,则允许相互访问.也就是说JavaScript只能访问和操作自己域下的资源,不能访问和操作其他域下的资源. 在 ...