Problem Description
As we all know, machine scheduling is a very classical problem in computer science and has been studied for a very long history. Scheduling problems differ widely in the nature of the constraints that must be satisfied and the type of schedule desired. Here we consider a 2-machine scheduling problem.

There are two machines A and B. Machine A has n kinds of working modes, which is called mode_0, mode_1, …, mode_n-1, likewise machine B has m kinds of working modes, mode_0, mode_1, … , mode_m-1. At the beginning they are both work at mode_0.

For k jobs given, each of them can be processed in either one of the two machines in particular mode. For example, job 0 can either be processed in machine A at mode_3 or in machine B at mode_4, job 1 can either be processed in machine A at mode_2 or in machine B at mode_4, and so on. Thus, for job i, the constraint can be represent as a triple (i, x, y), which means it can be processed either in machine A at mode_x, or in machine B at mode_y.

Obviously, to accomplish all the jobs, we need to change the machine's working mode from time to time, but unfortunately, the machine's working mode can only be changed by restarting it manually. By changing the sequence of the jobs and assigning each job to a suitable machine, please write a program to minimize the times of restarting machines.

 
Input
The input file for this program consists of several configurations. The first line of one configuration contains three positive integers: n, m (n, m < 100) and k (k < 1000). The following k lines give the constrains of the k jobs, each line is a triple: i, x, y.

The input will be terminated by a line containing a single zero.

 
Output
The output should be one integer per line, which means the minimal times of restarting machine.
 
Sample Input
5 5 10
0 1 1
1 1 2
2 1 3
3 1 4
4 2 1
5 2 2
6 2 3
7 2 4
8 3 3
9 4 3
0
 
Sample Output
3
题目大意:有A,B两种机器,给你三个数n,m,k,分别表示机器A有n中工作模式(编号0 ~ n-1),机器B有m种工作模式(编号0~m-1),共有k个任务,每种任务均可以在机器A,B的一个模式下完成。接下来输入k行,每行三个整数a,b,c,其中,a为任务编号,b表示该任务可在机器A的第b种模式下完成,c表示该任务可在机器B的第c中模式下完成。但机器A,B在变换模式时均需重启,让你完成所有的任务并使机器重启的次数最小。(机器A,B初始时均在第0模式)。
  解题思路:此题是求二分图的最小点覆盖。有以下定理:二分图的点覆盖数 = 匹配数。 建图:把A的n种模式和B的m种模式看做顶点,如果某人可在A的第i个模式和B的第j个模式下完成,则将顶点Ai 和 Bj 之间连一条边。
请看代码:
#include<iostream>
#include<cstring>
#include<string>
#include<cmath>
#include<cstdio>
#include<algorithm>
using namespace std ;
const int MAXN = 105 ;
short g[MAXN][MAXN] ;
bool vis[MAXN] ;
short cx[MAXN] , cy[MAXN] ;
int n , m , k ;
void init()
{
memset(g , 0 , sizeof(g)) ;
memset(cx , -1 , sizeof(cx)) ;
memset(cy , -1 , sizeof(cy)) ;
int i ;
for(i = 0 ; i < k ; i ++)
{
int a , b , c ;
scanf("%d%d%d" , &a , &b ,&c) ;
if(b != 0 && c != 0)
{
g[b][c] = 1 ;
}
}
}
int path(int v)
{
int i ;
for(i = 0 ; i < m ; i ++)
{
if(g[v][i] && !vis[i])
{
vis[i] = 1 ;
if(cy[i] == -1 || path(cy[i]))
{
cy[i] = v ;
cx[v] = i ;
return 1 ;
}
}
}
return 0 ;
}
void solve()
{
int i ;
int ans = 0 ;
for(i = 0 ; i < n ; i ++)
{
if(cx[i] == -1)
{
memset(vis , 0 , sizeof(vis)) ;
if(path(i))
ans ++ ;
}
}
printf("%d\n" , ans) ;
}
int main()
{
while (scanf("%d" , &n) != EOF)
{
if(n == 0)
break ;
scanf("%d%d" , &m , &k) ;
init() ;
solve() ;
}
return 0 ;
}

POJ 1325、ZOJ 1364、HDU 1150 Machine Schedule - from lanshui_Yang的更多相关文章

  1. 匈牙利算法模板 hdu 1150 Machine Schedule(二分匹配)

    二分图:https://blog.csdn.net/c20180630/article/details/70175814 https://blog.csdn.net/flynn_curry/artic ...

  2. hdu 1150 Machine Schedule(最小顶点覆盖)

    pid=1150">Machine Schedule Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/327 ...

  3. hdu 1150 Machine Schedule(二分匹配,简单匈牙利算法)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1150 Machine Schedule Time Limit: 2000/1000 MS (Java/ ...

  4. hdu 1150 Machine Schedule 最少点覆盖转化为最大匹配

    Machine Schedule Time Limit: 1 Sec  Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php? ...

  5. hdu 1150 Machine Schedule hdu 1151 Air Raid 匈牙利模版

    //两道大水……哦不 两道结论题 结论:二部图的最小覆盖数=二部图的最大匹配数 有向图的最小覆盖数=节点数-二部图的最大匹配数 //hdu 1150 #include<cstdio> #i ...

  6. hdu 1150 Machine Schedule 最少点覆盖

    Machine Schedule Time Limit: 1 Sec  Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php? ...

  7. HDU——1150 Machine Schedule

    Machine Schedule Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) ...

  8. HDU 1150 Machine Schedule (二分图最小点覆盖)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1150 有两个机器a和b,分别有n个模式和m个模式.下面有k个任务,每个任务需要a的一个模式或者b的一个 ...

  9. hdu 1150 Machine Schedule 最小覆盖点集

    题意:x,y两台机器各在一边,分别有模式x0 x1 x2 ... xn, y0 y1 y2 ... ym, 现在对给定K个任务,每个任务可以用xi模式或者yj模式完成,同时变换一次模式需要重新启动一次 ...

随机推荐

  1. HTML 表格的书写方式:

    首先要进行reset  table{border-collapse:collapse;border-spacing:0;}th{text-align:inherit;} 1. caption标签对整个 ...

  2. Mysql存储过程知识,案例--mysql存储过程基本函数

    Mysql存储过程知识,案例: create procedure delete_setting(in p_settingid integer) begin delete from setting wh ...

  3. Windows下MySQL数据库备份脚本(一)

    说明: MySQL数据库安装目录:C:\Program Files\MySQL\MySQL Server 5.0 MySQL数据库存放目录:C:\Program Files\MySQL\MySQL S ...

  4. makefile中PHONY的重要性

    伪目标是这样一个目标:它不代表一个真正的文件名,在执行make时可以指定这个目标来执行所在规则定义的命令,有时也可以将一个伪目标称为标签.伪目标通过   PHONY来指明. PHONY定义伪目标的命令 ...

  5. 配置mybatis错误总结

    ### The error may exist in SQL Mapper Configuration ### Cause: org.apache.ibatis.builder.BuilderExce ...

  6. Js 中json简单处理

    Json2.js下载地址 json常用处理 Json字符串 var str = '{"code":10,"msg":"codemsg",&q ...

  7. iphone 屏幕投射到Mac上

    在实际的工作中,我们往往需要演示iPhone上面的程序,但是由于手机屏幕太小,无法同时给很多人看,这时候就需要进行屏幕投射.目前我需要实现的是投射到Mac上.我使用有线USB和无线Airplay两种方 ...

  8. virtualBox ubuntu 文件共享

    如何将主机中的文件共享到虚拟机中: 1.  查看/dev中的文件  命令:ls /dev 2.  找到 cdrom1 ,直接挂载到/mnt 命令:sudo mount /dev/cdrom1 /mnt ...

  9. Java多线程初学者指南(9):为什么要进行数据同步

    Java中的变量分为两类:局部变量和类变量.局部变量是指在方法内定义的变量,如在run方法中定义的变量.对于这些变量来说,并不存在线程之间共享的问题.因此,它们不需要进行数据同步.类变量是在类中定义的 ...

  10. 【网络流24题】No.16 数字梯形问题 (不相交路径 最大费用流)

    [题意] 给定一个由 n 行数字组成的数字梯形如下图所示. 梯形的第一行有 m 个数字.从梯形的顶部的 m 个数字开始,在每个数字处可以沿左下或右下方向移动, 形成一条从梯形的顶至底的路径.规则 1: ...