BZOJ 4380 Myjnie 区间DP
4380: [POI2015]Myjnie
Time Limit: 40 Sec Memory Limit: 256 MBSec Special Judge
Submit: 162 Solved: 82
[Submit][Status][Discuss]
Description
有n家洗车店从左往右排成一排,每家店都有一个正整数价格p[i]。
有m个人要来消费,第i个人会驶过第a[i]个开始一直到第b[i]个洗车店,且会选择这些店中最便宜的一个进行一次消费。但是如果这个最便宜的价格大于c[i],那么这个人就不洗车了。
请给每家店指定一个价格,使得所有人花的钱的总和最大。
Input
第一行包含两个正整数n,m(1<=n<=50,1<=m<=4000)。
接下来m行,每行包含三个正整数a[i],b[i],c[i](1<=a[i]<=b[i]<=n,1<=c[i]<=500000)
Output
第一行输出一个正整数,即消费总额的最大值。
第二行输出n个正整数,依次表示每家洗车店的价格p[i],要求1<=p[i]<=500000。
若有多组最优解,输出任意一组。
Sample Input
1 4 7
3 7 13
5 6 20
6 7 1
1 2 5
Sample Output
5 5 13 13 20 20 13
HINT
Source
Solution
这个区间DP的思路十分神奇。
设G[l][r][i]为区间[l, r]中最小值为k的最优值,F[l][r][i] = max{G[l][r][j]} (j >= i)。
转移:F[l][r][i] = max{F[l][k-1]+F[k+1][r]+c[i]*cnt[k][i]} (cnt[k][i]就是指c[j]>=i且在区间[l,r]中且跨越点k的个数)
对于方案的记录,我们只需要在转移的时候记录,最后再从最优解开始dfs就可以了。
但是千万要注意的是,所有合法的情况初始化为-INF。不这样做的话,就构不出方案,把f转为0的时候就把方案给记录下来了。
Code
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <string>
#include <algorithm> using namespace std; #define FIO "a"
#define REP(i, a, b) for (int i = (a), i##_end_ = (b); i <= i##_end_; ++i)
#define DWN(i, a, b) for (int i = (a), i##_end_ = (b); i >= i##_end_; --i)
#define mset(a, b) memset(a, b, sizeof(a))
const int maxn = , maxm = , INF = 0x3fffffff;
int n, m, a[maxm], b[maxm], c[maxm];
int t[maxm], t_cnt;
int f[maxn][maxn][maxm], cnt[maxn][maxm], from[maxn][maxn][maxn], las[maxn][maxn][maxn];
int ans[maxn]; void dfs(int l, int r, int k)
{
if (l > r) return ;
ans[from[l][r][k]] = t[las[l][r][k]];
dfs(l, from[l][r][k]-, las[l][r][k]);
dfs(from[l][r][k]+, r, las[l][r][k]);
} int main()
{
// freopen(FIO ".in", "r", stdin);
// freopen(FIO ".out", "w", stdout);
scanf("%d %d", &n, &m);
t_cnt = ;
REP(i, , m) scanf("%d %d %d", &a[i], &b[i], &c[i]), t[++t_cnt] = c[i];
sort(t+, t+t_cnt+);
int temp = t_cnt, x; t_cnt = ;
REP(i, , temp) if (t[i] != t[i-]) t[++t_cnt] = t[i];
REP(i, , m) c[i] = lower_bound(t+, t+t_cnt+, c[i])-t;
REP(i, , n) REP(j, i, n) REP(k, , m) f[i][j][k] = -INF;
REP(len, , n)
REP(l, , n-len+)
{
int r = l+len-;
REP(i, l, r) REP(j, , m) cnt[i][j] = ;
REP(i, , m)
if (a[i] >= l && b[i] <= r)
REP(j, a[i], b[i]) cnt[j][c[i]] ++;
REP(i, l, r) DWN(j, m-, ) cnt[i][j] += cnt[i][j+];
REP(k, l, r)
REP(i, , m)
if (f[l][k-][i]+f[k+][r][i]+t[i]*cnt[k][i] > f[l][r][i])
f[l][r][i] = f[l][k-][i]+f[k+][r][i]+t[i]*cnt[k][i],
from[l][r][i] = k, las[l][r][i] = i;
DWN(i, m-, )
if (f[l][r][i] < f[l][r][i+])
f[l][r][i] = f[l][r][i+],
from[l][r][i] = from[l][r][i+], las[l][r][i] = las[l][r][i+];
}
printf("%d\n", f[][n][]);
dfs(, n, );
REP(i, , n) printf("%d%c", ans[i], i == n ? '\n' : ' ');
return ;
}
BZOJ 4380 Myjnie 区间DP的更多相关文章
- 【BZOJ-4380】Myjnie 区间DP
4380: [POI2015]Myjnie Time Limit: 40 Sec Memory Limit: 256 MBSec Special JudgeSubmit: 162 Solved: ...
- 【BZOJ4380】[POI2015]Myjnie 区间DP
[BZOJ4380][POI2015]Myjnie Description 有n家洗车店从左往右排成一排,每家店都有一个正整数价格p[i].有m个人要来消费,第i个人会驶过第a[i]个开始一直到第b[ ...
- [bzoj] 1068 压缩 || 区间dp
原题 f[i][j][0/1]表示i-1处有一个M,i到j压缩后的长度,0/1表示i到j中有没有m. 初始为j-i+1 f[i][j][0]=min(f[i][j][0],f[i][k][0]+j-k ...
- 【BZOJ 4380】4380: [POI2015]Myjnie (区间DP)
4380: [POI2015]Myjnie Description 有n家洗车店从左往右排成一排,每家店都有一个正整数价格p[i].有m个人要来消费,第i个人会驶过第a[i]个开始一直到第b[i]个洗 ...
- BZOJ 4380 [POI2015]Myjnie | DP
链接 BZOJ 4380 题面 有n家洗车店从左往右排成一排,每家店都有一个正整数价格p[i]. 有m个人要来消费,第i个人会驶过第a[i]个开始一直到第b[i]个洗车店,且会选择这些店中最便宜的一个 ...
- BZOJ.4897.[Thu Summer Camp2016]成绩单(区间DP)
BZOJ 显然是个区间DP.令\(f[l][r]\)表示全部消掉区间\([l,r]\)的最小花费. 因为是可以通过删掉若干子串来删子序列的,所以并不好直接转移.而花费只与最大最小值有关,所以再令\(g ...
- [BZOJ 1652][USACO 06FEB]Treats for the Cows 题解(区间DP)
[BZOJ 1652][USACO 06FEB]Treats for the Cows Description FJ has purchased N (1 <= N <= 2000) yu ...
- [BZOJ 1260][CQOI2007]涂色paint 题解(区间DP)
[BZOJ 1260][CQOI2007]涂色paint Description 假设你有一条长度为5的木版,初始时没有涂过任何颜色.你希望把它的5个单位长度分别涂上红.绿.蓝.绿.红色,用一个长度为 ...
- [BZOJ 1032][JSOI 2007]祖玛 题解(区间DP)
[BZOJ 1032][JSOI 2007]祖玛 Description https://www.lydsy.com/JudgeOnline/problem.php?id=1032 Solution ...
随机推荐
- mysql基准测试工具tpcc-mysql安装、使用、结果解读
TPCC是专门针对联机交易处理系统(OLTP系统)的规范,一般情况下我们也把这类系统称为业务处理系统,tpcc-mysql是percona基于TPC-C(下面简写成TPCC)衍生出来的产品,专用于My ...
- setInterval做定时器
<script src="/js/jquery-1.8.3.min.js"></script> <script> $(function () { ...
- 读书笔记 effective c++ Item 48 了解模板元编程
1. TMP是什么? 模板元编程(template metaprogramming TMP)是实现基于模板的C++程序的过程,它能够在编译期执行.你可以想一想:一个模板元程序是用C++实现的并且可以在 ...
- python3实现socket通信
目的:实现两台机器之间的通信.也就是说一个作为服务端(时刻监听接收数据),另一个作为客户端(发送数据). Python实现的过程个人理解: 1.服务端开始监听. 2.客户端发起连接请求. 3.服务端收 ...
- WebApi参数问题方案
原文:http://www.cnblogs.com/landeanfen/p/5337072.html
- python基础--类的方法
一:类的方法说明 类的方法分为实例方法,析构方法,构造方法,类方法,静态方法,属性方法,等等 类方法和静态方法都可以被类和类实例调用,类实例方法仅可以被类实例调用 类方法的隐含调用参数是类,而类实例方 ...
- caffe可视化
1.画网络图 假
- sqlserver中的循环遍历(普通循环和游标循环)(转载)
sql 经常用到循环,下面介绍一下普通循环和游标循环 1.首先需要一个测试表数据Student
- Git简明教程二、开始进行版本管理
上一篇介绍了Git中的一些基本概念.本篇来实际看一看如何通过几个常用命令来快速上手Git,完成版本管理的日常操作(核心操作). 0. 准备工作 安装Git后,请先在你的电脑上新建或选择一个目录作为测试 ...
- Python创建ES索引
# pip install elasticsearch from datetime import datetime from elasticsearch import Elasticsearch es ...