题目链接:https://cn.vjudge.net/contest/276233#problem/D

给出n个闭合的整数区间[ai,bi]和n个整数c1,…,cn。

编写一个程序:
从标准输入中读取间隔数,它们的端点和整数c1,…,cn,
计算具有间隔[ai,bi]的至少ci共同元素的整数集合Z的最小尺寸,对于每个i = 1,2,…,n,

具体思路:首先,我们假设存在一个数组s,s[i]记录的是第i个点到第0个点的需要取出的点的个数,对于题目中的从(A,B)至少有d个,我们就可以将这个条件变成posB-(posA-1)>=d,也就是(posA-1)-posB<=-d,这一段的边就建立好了,但是对于这个区间内的每一个数,我们的范围是没有限制的,但是如果没有限制会出现下列情况,s[i]>=i,也就是说会出现矛盾,所以对于这个区间内的没一个数都需要限制,也就是对于区间(i,i+1),我们可以引申出如下条件。0=<pos(i+1)-pos(i)<=1,

也就是 pos[i+1]-pos[i]>=0(pos[i]-pos[i+1]<=0),和 pos[i+1]-pos[i]<=1,也就是把这段区间的每一个小的区间的条件设立好了就可以了。(注意建边的时候注意方向)

AC代码:

 #include<bits/stdc++.h>
using namespace std;
# define ll long long
# define inf 0x3f3f3f3f
const int maxn = +;
const int maxedge= +;
int num,head[maxn];
int dis[maxn],vis[maxn];
int minx=inf;
int maxy=;
struct node
{
int fr;
int to;
int cost;
int nex;
} edge[maxedge];
struct point
{
int st;
int ed;
} po[maxn];
void init()
{
for(int i=; i<=; i++)
{
head[i]=-;
vis[i]=;
dis[i]=inf;
}
num=;
}
void addedge(int fr,int to,int cost)
{
edge[num].to=to;
edge[num].cost=cost;
edge[num].nex=head[fr];
head[fr]=num++;
}
ll spfa(int st,int ed)
{
dis[st]=;
vis[st]=;
queue<int>q;
q.push(st);
while(!q.empty())
{
int tmp=q.front();
q.pop();
vis[tmp]=;
for(int i=head[tmp]; i!=-; i=edge[i].nex)
{
int u=edge[i].to;
if(dis[u]>dis[tmp]+edge[i].cost)
{
dis[u]=dis[tmp]+edge[i].cost;
if(vis[u])
continue;
vis[u]=;
q.push(u);
}
}
}
return dis[ed];
}
int main()
{
int n,d;
scanf("%d",&n);
init();
for(int i=; i<=n; i++)
{
scanf("%d %d %d",&po[i].st,&po[i].ed,&d);
addedge(po[i].st-+,po[i].ed+,-d);//两个左边都+1,是为了防止出现变成-1的情况。
minx=min(minx,po[i].st);
maxy=max(maxy,po[i].ed+);
}
for(int i=minx; i<=maxy-; i++)
{
addedge(i,i+,);
addedge(i+,i,);
}
int ans=spfa(minx,maxy);
printf("%d\n",-ans);
return ;
}

E:

n个数的一个序列,m个约数,si, ni, oi, ki, 代表了序列中第si个数到第si+ni个数的和大于或小于ki,gt = 大于,lt = 小于

问是否存在相悖的约束

一个由memset引发的惨案,,,本来是用for循环初始化来着,结果这个题用for一直wa(后来发现是越界了--),然后改成memset的化就给过了。但是顺便加深了对建图的理解(理解写在上面了)。

AC代码:

   #include<bits/stdc++.h>
using namespace std;
# define ll long long
# define inf 0x3f3f3f3f
const int maxn = +;
const int maxedge= +;
int num,head[maxn],out[maxn];
int dis[maxn],vis[maxn];
int n,m;
struct node
{
int fr;
int to;
int cost;
int nex;
} edge[maxedge];
struct point
{
int st;
int ed;
} po[maxn];
void init()
{
for(int i=; i<maxn; i++)
{
vis[i]=;
dis[i]=inf;
head[i]=-;
out[i]=;
}
num=;
num=;
}
void addedge(int fr,int to,int cost)
{
edge[num].to=to;
edge[num].cost=cost;
edge[num].nex=head[fr];
head[fr]=num++;
}
ll spfa(int st)
{
dis[st]=;
vis[st]=;
queue<int>q;
q.push(st);
while(!q.empty())
{
int tmp=q.front();
q.pop();
if(++out[tmp]>n+)
return -;
vis[tmp]=;
for(int i=head[tmp]; i!=-; i=edge[i].nex)
{
int u=edge[i].to;
if(dis[u]>dis[tmp]+edge[i].cost)
{
dis[u]=dis[tmp]+edge[i].cost;
if(vis[u])
continue;
vis[u]=;
q.push(u);
}
}
}
return ;
}
int main()
{
while(cin>>n)
{
init();
if(n==)
break;
cin>>m;
int u,v,d;
string str;
for(int i=; i<=m; i++)
{
cin>>u>>v>>str>>d;
if(str=="gt")
{
addedge(u,u+v+,-(d+));
}
else
{
addedge(v+u+,u,d-);
}
}
for(int i=; i<=n+; i++)
{
addedge(,i,);//超级源点的建立过程
}
int ans=spfa();
if(ans==-)
cout<<"successful conspiracy"<<endl;
else
cout<<"lamentable kingdom"<<endl;
}
return ;
}

G题:

给出数轴上的n个闭合int型区间。现在要在数轴上任意取一堆元素,构成一个元素集合V,要求给出的每个区间和元素集合V的交集至少有两个不同的元素,求集合V最小的元素个数。

超级源点的建立,为了保证整个区间的连通的,我们就需要建立一个超级源点来使得整个图是连通的,但是注意一点,在正常建边的时候,如果是大的指向小的,这个时候我们建立超级源点的时候就也应该遵循这个原则,如果是是小的指向大的,我们建立超级源点的时候反过来就可以了。

AC代码:

   #include<bits/stdc++.h>
using namespace std;
# define ll long long
# define inf 0x3f3f3f3f
const int maxn = +;
const int maxnedge=+;
struct node
{
int nex;
int to;
int cost;
} edge[maxnedge];
int head[maxn],vis[maxn],dis[maxn],num;
void init()
{
memset(head,-,sizeof(head));
memset(vis,,sizeof(vis));
memset(dis,inf,sizeof(dis));
num=;
}
void addedge(int fr,int to,int cost)
{
edge[num].to=to;
edge[num].nex=head[fr];
edge[num].cost=cost;
head[fr]=num++;
}
int spfa(int st,int ed)
{
queue<int>q;
dis[st]=;
vis[st]=;
q.push(st);
while(!q.empty())
{
int tmp=q.front();
q.pop();
vis[tmp]=;
for(int i=head[tmp]; i!=-; i=edge[i].nex)
{
int u=edge[i].to;
if(dis[u]>dis[tmp]+edge[i].cost)
{
dis[u]=dis[tmp]+edge[i].cost;
if(vis[u])
continue;
vis[u]=;
q.push(u);
}
}
}
return dis[ed];
}
int main()
{
init();
int n;
scanf("%d",&n);
int u,v;
int minx=inf,maxy=;
for(int i=; i<=n; i++)
{
scanf("%d %d",&u,&v);
u+=;
v+=;
addedge(u-,v,-);
addedge(v,u-,v-u+);
minx=min(minx,u-);
maxy=max(maxy,v);
}
int st=maxy+;
for(int i=minx; i<maxy; i++){
addedge(st,i,);
addedge(i,i+,);
addedge(i+,i,);
}
addedge(st,maxy,);
int ans=spfa(st,maxy);
printf("%d\n",-ans);
return ;
}

spfa+差分约束系统(D - POJ - 1201 && E - POJ - 1364&&G - POJ - 1)+建边的注意事项+超级源点的建立的更多相关文章

  1. spfa+差分约束系统(C - House Man HDU - 3440 )+对差分约束系统的初步理解

    题目链接:https://cn.vjudge.net/contest/276233#problem/C 题目大意:有n层楼,给你每个楼的高度,和这个人单次的最大跳跃距离m,两个楼之间的距离最小是1,但 ...

  2. poj 1364 King(线性差分约束+超级源点+spfa判负环)

    King Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 14791   Accepted: 5226 Description ...

  3. UVA 11374 Halum (差分约束系统,最短路)

    题意:给定一个带权有向图,每次你可以选择一个结点v 和整数d ,把所有以v为终点的边权值减少d,把所有以v为起点的边权值增加d,最后要让所有的边权值为正,且尽量大.若无解,输出结果.若可无限大,输出结 ...

  4. 差分约束系统专题 && 对差分约束系统的理解

    具体能解决的问题: 求最长路,最短路,或者判断解是否存在. 在建边的时候: 一般是给你区间减法的关系,或者是这个点到另一个点的关系.如果给你的关系是除法的话,我们可以通过使用两边同时取log的方式,将 ...

  5. 【POJ 1201】 Intervals(差分约束系统)

    [POJ 1201] Intervals(差分约束系统) 11 1716的升级版 把原本固定的边权改为不固定. Intervals Time Limit: 2000MS   Memory Limit: ...

  6. 差分约束系统 + spfa(A - Layout POJ - 3169)

    题目链接:https://cn.vjudge.net/contest/276233#problem/A 差分约束系统,假设当前有三个不等式 x- y <=t1 y-z<=t2 x-z< ...

  7. poj 1201 Intervals(差分约束)

    做的第一道差分约束的题目,思考了一天,终于把差分约束弄懂了O(∩_∩)O哈哈~ 题意(略坑):三元组{ai,bi,ci},表示区间[ai,bi]上至少要有ci个数字相同,其实就是说,在区间[0,500 ...

  8. POJ 3169 Layout (spfa+差分约束)

    题目链接:http://poj.org/problem?id=3169 差分约束的解释:http://www.cnblogs.com/void/archive/2011/08/26/2153928.h ...

  9. POJ 3159 Candies (图论,差分约束系统,最短路)

    POJ 3159 Candies (图论,差分约束系统,最短路) Description During the kindergarten days, flymouse was the monitor ...

随机推荐

  1. Django知识总汇

    基础 Django基础 Django基本命令 model系统 ORM基础 ORM字段和参数 ORM对数据库操作 ORM中介模型 ORM之其他骚操作 templates系统 模板语言 views系统 视 ...

  2. 【uoj#311】[UNR #2]积劳成疾 dp

    题目描述 一个长度为 $n$ 的序列,每个数在 $[1,n]$ 之间.给出 $m$ ,求所有序列的 $\prod_{i=1}^{n-m+1}(\text{Max}_{j=i}^{j+m-1}a[j]) ...

  3. c++11 语言级线程

    c++11 语言级线程 线程的创建 用std::thread创建线程非常简单,只需要提供线程函数或函数对象即可,并且可以同时指定线程函数的参数. #define _CRT_SECURE_NO_WARN ...

  4. keepalived回顾

    Keepalived是lvs的扩展项目,因此它们之间具备良好的兼容性. 通过对服务器池对象的健康检查,实现对失效机器/服务的故障隔离: 负载均衡器之间的失败切换failover,通过VRRPv2 st ...

  5. vue入门教程

    vue视频教程(对vue有个概览,要掌握vue-cli的用法,对vue-router,vuex有基本的概念) https://www.imooc.com/learn/1091 1. vue-cli v ...

  6. 解题:HEOI 2015 最短不公共子串

    题面 制杖四合一,HEOI以前居然出这种**题,看来HE还是联考比较好= = 首先对第二个串建SAM 第一个简单,以每个位置为起点在SAM上走,失配时更新答案 第二个先在第二个串上预处理$firs[i ...

  7. 图像处理之色彩转换(CCM)

    1 色彩校正原理 人眼对色彩的识别,是基于人眼对光谱存在三种不同的感应单元,不同的感应单元对不同波段的光有不同的响应曲线的原理,通过大脑的合成得到色彩的感知.  一般来说,我们可以通俗的用 RGB三基 ...

  8. Oracle 中常用数据字典大总结

    原文出处:小宝马的爸爸 - 梦想的家园 前面呢,也断断续续的介绍了一些诸如 Sql*Plus 等等关于 Oracle 的基本的内容, 对于 Oracle 这样的大型数据库呢,自身的运行和维护也是个不得 ...

  9. Hadoop基础原理

    Hadoop基础原理 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 业内有这么一句话说:云计算可能改变了整个传统IT产业的基础架构,而大数据处理,尤其像Hadoop组件这样的技术出 ...

  10. html5 +css3 点击后水波纹扩散效果 兼容移动端

    <!DOCTYPE html> <html> <head> <meta http-equiv="Content-Type" content ...