scikit-learn 入门练习
1. 一个简单的SVM实例:
from sklearn import svm X = [[2, 0], [1, 1], [2,3]] y = [0, 0, 1] clf = svm.SVC(kernel = 'linear')
clf.fit(X, y) print (clf) # get support vectors
print (clf.support_vectors_) # get indices of support vectors
print (clf.support_) # get number of support vectors for each class
print (clf.n_support_)
2. 稍微复杂一点的线性可分SVM
print(__doc__) import numpy as np
import pylab as pl
from sklearn import svm # we create 40 separable points
np.random.seed(0)
X = np.r_[np.random.randn(20, 2) - [2, 2], np.random.randn(20, 2) + [2, 2]]
Y = [0] * 20 + [1] * 20 # fit the model
clf = svm.SVC(kernel='linear')
clf.fit(X, Y) # get the separating hyperplane
w = clf.coef_[0]
a = -w[0] / w[1]
xx = np.linspace(-5, 5)
yy = a * xx - (clf.intercept_[0]) / w[1] # plot the parallels to the separating hyperplane that pass through the
# support vectors
b = clf.support_vectors_[0]
yy_down = a * xx + (b[1] - a * b[0])
b = clf.support_vectors_[-1]
yy_up = a * xx + (b[1] - a * b[0]) print ("w: "), (w)
print ("a: "), (a)
# print (" xx: "), (xx)
# print (" yy: "), (yy)
print ("support_vectors_: "), (clf.support_vectors_)
print ("clf.coef_: "), (clf.coef_) # plot the line, the points, and the nearest vectors to the plane
pl.plot(xx, yy, 'k-')
pl.plot(xx, yy_down, 'k--')
pl.plot(xx, yy_up, 'k--') pl.scatter(clf.support_vectors_[:, 0], clf.support_vectors_[:, 1],
s=80, facecolors='none')
pl.scatter(X[:, 0], X[:, 1], c=Y, cmap=pl.cm.Paired) pl.axis('tight')
pl.show()
结果如下:

Missing parentheses in call to 'print'——python语法错误
这个消息的意思是你正在试图用python3.x来运行一个只用于python2.x版本的python脚本。
print"Hello world"
上面的语法在python3中是错误的。在python3中,你需要将helloworld加括号,正确的写法如下
print("Hello world")
#所以上面的例子在print时都加了括号
scikit-learn 入门练习的更多相关文章
- scikit learn 模块 调参 pipeline+girdsearch 数据举例:文档分类 (python代码)
scikit learn 模块 调参 pipeline+girdsearch 数据举例:文档分类数据集 fetch_20newsgroups #-*- coding: UTF-8 -*- import ...
- (原创)(三)机器学习笔记之Scikit Learn的线性回归模型初探
一.Scikit Learn中使用estimator三部曲 1. 构造estimator 2. 训练模型:fit 3. 利用模型进行预测:predict 二.模型评价 模型训练好后,度量模型拟合效果的 ...
- (原创)(四)机器学习笔记之Scikit Learn的Logistic回归初探
目录 5.3 使用LogisticRegressionCV进行正则化的 Logistic Regression 参数调优 一.Scikit Learn中有关logistics回归函数的介绍 1. 交叉 ...
- Scikit Learn: 在python中机器学习
转自:http://my.oschina.net/u/175377/blog/84420#OSC_h2_23 Scikit Learn: 在python中机器学习 Warning 警告:有些没能理解的 ...
- Scikit Learn
Scikit Learn Scikit-Learn简称sklearn,基于 Python 语言的,简单高效的数据挖掘和数据分析工具,建立在 NumPy,SciPy 和 matplotlib 上.
- Linear Regression with Scikit Learn
Before you read This is a demo or practice about how to use Simple-Linear-Regression in scikit-lear ...
- 如何使用scikit—learn处理文本数据
答案在这里:http://www.tuicool.com/articles/U3uiiu http://scikit-learn.org/stable/modules/feature_extracti ...
- Query意图分析:记一次完整的机器学习过程(scikit learn library学习笔记)
所谓学习问题,是指观察由n个样本组成的集合,并根据这些数据来预测未知数据的性质. 学习任务(一个二分类问题): 区分一个普通的互联网检索Query是否具有某个垂直领域的意图.假设现在有一个O2O领域的 ...
- 机器学习框架Scikit Learn的学习
一 安装 安装pip 代码如下:# wget "https://pypi.python.org/packages/source/p/pip/pip-1.5.4.tar.gz#md5=83 ...
- Python第三方库(模块)"scikit learn"以及其他库的安装
scikit-learn是一个用于机器学习的 Python 模块. 其主页:http://scikit-learn.org/stable/. GitHub地址: https://github.com/ ...
随机推荐
- IOS实现多媒体音频之音乐播放器
随着智能手机市场越来越活跃,相应的app也变得五彩缤纷,各式各样,让你的app更吸引人多媒体技术不可避免.通过对音频和视频等控制让你的app更加丰富多彩,今天和大家一起研究下基本的音频使用.本文只提供 ...
- maven nexus linux私服搭建
搭建maven 下载jar包,将apache-maven-3.2.2-bin.tar.gz上传到server 1.解压 tar -zvxf apache-maven-3.2.2-bin.tar.gz ...
- Android 当修改一些代码时,使用什么编译命令可以最有效率
前言 欢迎大家我分享和推荐好用的代码段~~ 声明 欢迎转载,但请保留文章原始出处: CSDN:http://www.csdn.net ...
- Sql Server-查询一列的数据进行拼接
select convert(VARCHAR(10),memberid) +',' from t_member where teamid = 1009 for xml path('')
- (转)初识 Lucene
Lucene 是一个基于 Java 的全文信息检索工具包,它不是一个完整的搜索应用程序,而是为你的应用程序提供索引和搜索功能.Lucene 目前是 Apache Jakarta 家族中的一个开源项目. ...
- Android6.0执行时权限解析,RxPermissions的使用,自己封装一套权限框架
Android6.0执行时权限解析,RxPermissions的使用.自己封装一套权限框架 在Android6.0中,新添加了一个执行时的权限,我相信非常多人都已经知道了.预计也知道怎么用了,这篇博客 ...
- 【Nodejs】理想论坛帖子爬虫1.01
用Nodejs把Python实现过的理想论坛爬虫又实现了一遍,但是怎么判断所有回调函数都结束没有好办法,目前的spiderCount==spiderFinished判断法在多页情况下还是会提前中止. ...
- 【nodejs】使用response输出中文但页面中文乱码的处置
两点要确认: 1.head里有<meta charset="utf-8"/> 2.js文件编码为utf-8格式. 第二点往往容易被忽略,所以出现乱码. 附上代码: 'u ...
- tcpdump-根据IP查看程序与服务都用了哪些端口
tcpdump -i em1 -tttt src 116.3.248.157 and port ! 6869 -nn -i 指定端口 -tttt 附带时间戳 -nn 解析域名与端口信息 ####### ...
- 免费电子书:The Guide to Minimum Viable Products
本地下载 来自uxPin的免费电子书