P1306 斐波那契公约数

题意:求\(Fibonacci\)数列第\(n\)项和第\(m\)项的最大公约数的最后8位。

数据范围:\(1<=n,m<=10^9\)


一些很有趣的性质

引理1:\(F_{(a,b)}=(F_a,F_b)\)

在证明引理1之前,我们得先证明引理2和引理3

引理2:\(F_{m+n}=F_m*F_{n+1}+F_{m-1}*F_n=F_{m+1}*F_n+F_m*F_{n-1}\)

证明:

设正整数\(a>b\)

\(F_a\)

\(=F_{a-1}+F_{a-2}\)

\(=2*F_{a-2}+F_3\)

\(=3*F_{a-3}+2*F_{a-4}\)

\(=F_4*F_{a-3}+F_3*F_{a-4}\)

\(=...\)

\(=F_b*F_{a-b+1}+F_{b-1}*F_{a-b}\)

引理3:\((F_n,F_{n+1})=1\)

证明:

\((F_{n+1},F_n)\)

\(=(F_{n+1}-f_n,F_n)\)

\(=(F_{n-1},F_n)\)

\(=...\)

\(=(F_4,F_3)\)

\(=1\)

证明引理1:

对于\(F_{(a,b)}=(F_a,F_b)\)

右边

\(=(F_b*F_{a-b+1}+F_{b-1}*F_{a-b},F_b)\)

\(=(F_{b-1}*F_{a-b},F_b)\)

\(=(F_{a-b},F_b)\)

即相当于坐标版的gcd了

最后等于\((F_{(a-b)},F_0)\)


直接上矩阵快速幂一顿操作就行了


Code:

#include <cstdio>
#include <cstring>
#define ll long long
const ll mod=100000000;
ll m,n;
ll gcd(ll a,ll b)
{
return b?gcd(b,a%b):a;
}
struct matrix
{
ll dx[3][3];
matrix()
{
memset(dx,0,sizeof(dx));
}
matrix friend operator *(matrix n1,matrix n2)
{
matrix n3;
for(int i=1;i<=2;i++)
for(int j=1;j<=2;j++)
for(int k=1;k<=2;k++)
n3.dx[i][j]=(n3.dx[i][j]+n1.dx[i][k]*n2.dx[k][j])%mod;
return n3;
}
}base,s;
matrix quick_pow(matrix d,ll k)
{
matrix f;
f.dx[1][1]=f.dx[2][2]=1;
while(k)
{
if(k&1)
f=f*d;
d=d*d;
k>>=1;
}
return f;
}
int main()
{
scanf("%lld%lld",&n,&m);
ll k=gcd(n,m);
base.dx[1][1]=base.dx[1][2]=base.dx[2][1]=s.dx[1][1]=s.dx[1][2]=1;
printf("%lld\n",quick_pow(base,k-1).dx[1][1]);
return 0;
}

2018.7.8

洛谷 P1306 斐波那契公约数 解题报告的更多相关文章

  1. 洛谷 P1306 斐波那契公约数

    洛谷 P1306 斐波那契公约数 题目描述 对于Fibonacci数列:1,1,2,3,5,8,13......大家应该很熟悉吧~~~但是现在有一个很“简单”问题:第n项和第m项的最大公约数是多少? ...

  2. 洛谷——P1306 斐波那契公约数

    P1306 斐波那契公约数 题目描述 对于Fibonacci数列:1,1,2,3,5,8,13......大家应该很熟悉吧~~~但是现在有一个很“简单”问题:第n项和第m项的最大公约数是多少? 输入输 ...

  3. 洛谷- P1306 斐波那契公约数 - 矩阵快速幂 斐波那契性质

    P1306 斐波那契公约数:https://www.luogu.org/problemnew/show/P1306 这道题目就是求第n项和第m项的斐波那契数字,然后让这两个数求GCD,输出答案的后8位 ...

  4. 洛谷P1306 斐波那契公约数

    题目描述 对于Fibonacci数列:1,1,2,3,5,8,13......大家应该很熟悉吧~~~但是现在有一个很“简单”问题:第n项和第m项的最大公约数是多少? 输入输出格式 输入格式: 两个正整 ...

  5. 洛谷 P1306 斐波那契公约数 题解

    题面 结论:gcd(F[n],F[m])=F[gcd(n,m)]; F[n]=a和F[n+1]=b F[n+2]=a+b,F[n+3]=a+2b,…F[m]=F[m?n?1]a+F[m?n]b F[n ...

  6. 「洛谷P1306」斐波那契公约数 解题报告

    P1306 斐波那契公约数 题目描述 对于Fibonacci数列:1,1,2,3,5,8,13......大家应该很熟悉吧~~~但是现在有一个很"简单"问题:第n项和第m项的最大公 ...

  7. 洛谷P1962 斐波那契数列【矩阵运算】

    洛谷P1962 斐波那契数列[矩阵运算] 题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) ( ...

  8. 洛谷P3938 斐波那契

    题目戳 题目描述 小 C 养了一些很可爱的兔子. 有一天,小 C 突然发现兔子们都是严格按照伟大的数学家斐波那契提出的模型来进行 繁衍:一对兔子从出生后第二个月起,每个月刚开始的时候都会产下一对小兔子 ...

  9. P1306 斐波那契公约数

    题目描述 对于Fibonacci数列:1,1,2,3,5,8,13......大家应该很熟悉吧~~~但是现在有一个很“简单”问题:第n项和第m项的最大公约数是多少? 输入输出格式 输入格式: 两个正整 ...

随机推荐

  1. spring boot 使用及最佳实践

    第一部分,spring boot 文档 Spring boot的使用 使用maven进行构建 用户可以通过继承spring-boot-starter-parent来获取默认的依赖. l  默认java ...

  2. 3. 第一个程序Hello, World!

    第一个接口 HelloWorld 本项目所有代码均可在github上下载. 1. 编辑config.py # 基础配置类 import os class Config(object): ROOT = ...

  3. 初学node.js-nodejs中实现HTTP服务(3)

    一.node.js实现服务端 创建hello-world-server.js文件,服务端源码如下: /** * node.js实现http服务端 */ var http = require('http ...

  4. 2019第十届蓝桥杯C++B组题解(赛后重写的,不确保答案正确性,仅供参考)

    先说一下这次的感受吧,我们考场比较乱,开始比赛了,还有的电脑有故障,(向这些人发出同情),第一次认真参加比赛,真正比赛的时候感觉没有那么正式,很乱,各种小问题,(例如博主就没找到题目在哪里,找到后又不 ...

  5. linux压缩相关

    tar命令 tar是打包,即把好多东西放在一个大文件里面,之后再压缩:当然也可以解包 tar的几个参数说明: -c 创建一个新的包 -x 将包里的文件还原出来 -t 显示包内文件的列表 -f 指定要处 ...

  6. fdisk命令详解

    基础命令学习目录 原文链接:https://www.cnblogs.com/xiaofengkang/archive/2011/06/06/2073579.html fdisk -l 可以列出所有的分 ...

  7. Python发送邮件(最全)

    简单邮件传输协议(SMTP)是一种协议,用于在邮件服务器之间发送电子邮件和路由电子邮件. Python提供smtplib模块,该模块定义了一个SMTP客户端会话对象,可用于使用SMTP或ESMTP侦听 ...

  8. 插件使用-HighChart

    一.介绍 让数据可视化更简单,兼容 IE6+.完美支持移动端.图表类型丰富.方便快捷的 HTML5 交互性图表库. 官网(英):https://www.highcharts.com/download ...

  9. sublime编写markdownm

    sublime编写markdownm 以前用有道云笔记,找了半天更改字体大小,结果还找不 到,那个字实在是太小了,像我这种有强迫症的患者,实 在受不了简约风格的有道云,所以上网找了与和诺插件并 受到一 ...

  10. 设计与实现分离——面向接口编程(OO博客第三弹)

    如果说继承是面向对象程序设计中承前启后的特质,那么接口就是海纳百川的体现了.它们都是对数据和行为的抽象,都是对性质和关系的概括.只不过前者是纵向角度,而后者是横向角度罢了.今天呢,我想从设计+语法角度 ...