传送门

线性递推

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#define re register
using namespace std;
const int maxn = 3000005; int n;
long long mod;
int p[maxn]; int main(){
scanf("%d%lld",&n,&mod);
printf("%d\n",p[1] = 1);
for(re int i = 2 ; i <= n ; ++i) {
p[i] = -mod / i * p[mod % i] % mod;
if(p[i] < 0) p[i] += mod;
printf("%d\n",p[i]);
}
return 0;
}

快速幂

#include<cstdio>
#include<iostream>
#include<algorithm>
#define ll long long
using namespace std; ll n,p; ll ksm (ll a,ll b=p-2){
ll ans=1;
while(b>0){
if(b&1){
ans=ans*a%p;
}
a=a*a%p;
b>>=1;
}
return ans;
} int main(){
ios::sync_with_stdio(false);
cin>>n>>p;
for(int i=1;i<=n;i++) {
cout<<ksm(i)<<endl;
}
return 0;
}

拓展欧几里得

#include<cstdio>
#include<iostream>
#include<algorithm>
#define ll long long
using namespace std; ll n,p;
ll x,y; void exgcd(ll a,ll b,ll &x,ll &y){
if(b==0){
x=1,y=0;
return;
}
exgcd(b,a%b,y,x);
y-=a/b*x;
} int main(){
ios::sync_with_stdio(false);
cin>>n>>p;
for(int i=1;i<=n;i++){
exgcd(i,p,x,y);
cout<<((x%p)+p)%p<<endl;
}
return 0;
}

洛谷P3811乘法逆元的更多相关文章

  1. [洛谷P3811]【模板】乘法逆元

    P3811 [模板]乘法逆元 题意 求1-n所有整数在模p意义下的逆元. 分析 逆元 如果x满足\(ax=1(\%p)\)(其中a p是给定的数)那么称\(x\)是在\(%p\)意义下\(a\)的逆元 ...

  2. 模板【洛谷P3811】 【模板】乘法逆元

    P3811 [模板]乘法逆元 给定n,p求1~n中所有整数在模p意义下的乘法逆元. T两个点的费马小定理求法: code: #include <iostream> #include < ...

  3. 洛谷 P3811 【模板】乘法逆元

    P3811 [模板]乘法逆元 题目背景 这是一道模板题 题目描述 给定n,p求1~n中所有整数在模p意义下的乘法逆元. 输入输出格式 输入格式: 一行n,p 输出格式: n行,第i行表示i在模p意义下 ...

  4. 洛谷——P3811 【模板】乘法逆元

    P3811 [模板]乘法逆元 线性求逆元 逆元定义:若$a*x\equiv1 (\bmod {b})$,且$a$与$b$互质,那么我们就能定义: $x$为$a$的逆元,记为$a^{-1}$,所以我们也 ...

  5. 【洛谷P3811】[模板]乘法逆元

    乘法逆元 题目链接 求逆元的三种方式: 1.扩欧 i*x≡1 (mod p) 可以化为:x*i+y*p=1 exgcd求x即可 inline void exgcd(int a,int b,int &a ...

  6. 乘法逆元-洛谷-P3811

    题目背景 这是一道模板题 题目描述 给定n,p求1~n中所有整数在模p意义下的乘法逆元. 输入输出格式 输入格式: 一行n,p 输出格式: n行,第i行表示i在模p意义下的逆元. 输入输出样例 输入样 ...

  7. 洛谷—— P3811 【模板】乘法逆元

    https://www.luogu.org/problem/show?pid=3811 题目背景 这是一道模板题 题目描述 给定n,p求1~n中所有整数在模p意义下的乘法逆元. 输入输出格式 输入格式 ...

  8. P3811 乘法逆元

    传送 乘法逆元:ax ≡ 1 (mod p),其中x为a的逆元,求模意义下的乘法逆元,通常有一下几种方法: 1.拓展欧几里得(也就是exgcd) ax ≡ 1 (mod p) ax-py=1 这就变成 ...

  9. 洛谷 P3811 【模板】乘法逆元(欧拉定理&&线性求逆元)

    题目传送门 逆元定义 逆元和我们平时所说的倒数是有一定的区别的,我们平时所说的倒数是指:a*(1/a) = 1,那么逆元和倒数之间的区别就是:假设x是a的逆元,那么 a * x = 1(mod p), ...

随机推荐

  1. Effective C++ 条款08:别让异常逃离析构函数

    1.别让异常逃离析构函数的原因 <Effective C++>第三版中条款08建议不要在析构函数中抛出异常,原因是C++异常机制不能同时处理两个或两个以上的异常.多个异常同时存在的情况下, ...

  2. java多线程 -- ForkJoinPool 分支/ 合并框架 工作窃取

    Fork/Join 框架:就是在必要的情况下,将一个大任务,进行拆分(fork)成若干个小任务(拆到不可再拆时),再将一个个的小任务运算的结果进行 join 汇总. Fork/Join 框架与线程池的 ...

  3. 解题:NOI 2014 动物园

    题面 其实好像并不难,因为猫老师(应该是猫老师吧,还是LX大佬?)有一句话让我印象深刻:“包的(border)的包的还是包的”=.= 统计个数不就是统计长度么,然后根据上面那句话,当$nxt$长度大于 ...

  4. 解题:SCOI 2010 序列操作

    题面 线段树......模板题(雾? 然而两种标记会互相影响,必须保证每次只放一个(不然就不知道怎么放了),具体的影响就是: 翻转标记会使得覆盖标记一起翻转,下放的时候就是各种swap 覆盖标记会抹掉 ...

  5. increment/decrement/dereference

    #include <vector> #include <deque> #include <algorithm> #include <iostream> ...

  6. sqlalchemy多外键关联

    一.前言 如果有张表A的多个字段关联另一张表B的一个字段,就如同一个客户表的账单地址和发货地址,同时关联地址表中的id字段. 二.事例 # -*- coding: UTF-8 -*- from sql ...

  7. UVA12167 Proving Equivalences

    UVA12167 Proving Equivalences 题意翻译 题目描述 在数学中,我们常常需要完成若干命题的等价性证明. 例如:有4个命题a,b,c,d,要证明他们是等价的,我们需要证明a&l ...

  8. JAVA-JSP动作

    动作元素基本上是预定义的功能.下表列出了可用的JSP动作 - 编号 动作 描述 1 jsp:include 在请求页面时包含一个文件. 2 jsp:useBean 查找或实例化一个JavaBean. ...

  9. 51 nod 1205 流水线调度

    51 nod 1205 流水线调度 基准时间限制:1 秒 空间限制:131072 KB 分值: 40 难度:4级算法题   N个作业{1,2,…,n}要在由2台机器M1和M2组成的流水线上完成加工.每 ...

  10. 数据库(八)之T-SQL编程

    什么是Transact-SQL? 结构化查询语言(SQL)是有美国国家标准协会(ANSI)和国际标准化组织(ISO)定义的标准,而Transact-SQL是Microsoft公司对此标准的一个实现. ...