解决spark中遇到的数据倾斜问题
一. 数据倾斜的现象
多数task执行速度较快,少数task执行时间非常长,或者等待很长时间后提示你内存不足,执行失败。
二. 数据倾斜的原因
常见于各种shuffle操作,例如reduceByKey,groupByKey,join等操作。
数据问题
- key本身分布不均匀(包括大量的key为空)
- key的设置不合理
spark使用问题
- shuffle时的并发度不够
- 计算方式有误
三. 数据倾斜的后果
- spark中一个stage的执行时间受限于最后那个执行完的task,因此运行缓慢的任务会拖累整个程序的运行速度(分布式程序运行的速度是由最慢的那个task决定的)。
- 过多的数据在同一个task中执行,将会把executor撑爆,造成OOM,程序终止运行。
一个理想的分布式程序:
发生数据倾斜时,任务的执行速度由最大的那个任务决定:
四. 数据问题造成的数据倾斜
发现数据倾斜的时候,不要急于提高executor的资源,修改参数或是修改程序,首先要检查数据本身,是否存在异常数据。
找出异常的key
如果任务长时间卡在最后最后1个(几个)任务,首先要对key进行抽样分析,判断是哪些key造成的。
选取key,对数据进行抽样,统计出现的次数,根据出现次数大小排序取出前几个
df.select("key").sample(false,0.1).(k=>(k,1)).reduceBykey(_+_).map(k=>(k._2,k._1)).sortByKey(false).take(10)
如果发现多数数据分布都较为平均,而个别数据比其他数据大上若干个数量级,则说明发生了数据倾斜。
经过分析,倾斜的数据主要有以下三种情况:
- null(空值)或是一些无意义的信息()之类的,大多是这个原因引起。
- 无效数据,大量重复的测试数据或是对结果影响不大的有效数据。
- 有效数据,业务导致的正常数据分布。
解决办法
第1,2种情况,直接对数据进行过滤即可。
第3种情况则需要进行一些特殊操作,常见的有以下几种做法。
- 隔离执行,将异常的key过滤出来单独处理,最后与正常数据的处理结果进行union操作。
- 对key先添加随机值,进行操作后,去掉随机值,再进行一次操作。
- 使用
reduceByKey
代替groupByKey
- 使用map join。
举例:
如果使用reduceByKey
因为数据倾斜造成运行失败的问题。具体操作如下:
- 将原始的
key
转化为key + 随机值
(例如Random.nextInt) - 对数据进行
reduceByKey(func)
- 将
key + 随机值
转成key
- 再对数据进行
reduceByKey(func)
tip1: 如果此时依旧存在问题,建议筛选出倾斜的数据单独处理。最后将这份数据与正常的数据进行union即可。
tips2: 单独处理异常数据时,可以配合使用Map Join解决。
五. spark使用不当造成的数据倾斜
1. 提高shuffle并行度
dataFrame
和sparkSql
可以设置spark.sql.shuffle.partitions
参数控制shuffle的并发度,默认为200。
rdd操作可以设置spark.default.parallelism
控制并发度,默认参数由不同的Cluster Manager控制。
局限性: 只是让每个task执行更少的不同的key。无法解决个别key特别大的情况造成的倾斜,如果某些key的大小非常大,即使一个task单独执行它,也会受到数据倾斜的困扰。
2. 使用map join 代替reduce join
在小表不是特别大(取决于你的executor大小)的情况下使用,可以使程序避免shuffle的过程,自然也就没有数据倾斜的困扰了。
局限性: 因为是先将小数据发送到每个executor上,所以数据量不能太大。
具体使用方法和处理流程参照:
六. MapReduce过程中数据倾斜的处理
- 过滤无效数据,如空值、测试数据等等
- 在map端使用combiner函数
- 局部聚合加全局聚合。
- 先对key加随机后缀,然后进行reduce操作
- 对第一次执行的结果再此进行MR操作。(在map端去掉后缀后再进行reduce操作)
解决spark中遇到的数据倾斜问题的更多相关文章
- Spark性能优化:数据倾斜调优
前言 继<Spark性能优化:开发调优篇>和<Spark性能优化:资源调优篇>讲解了每个Spark开发人员都必须熟知的开发调优与资源调优之后,本文作为<Spark性能优化 ...
- spark调优篇-数据倾斜(汇总)
数据倾斜 为什么会数据倾斜 spark 中的数据倾斜并不是说原始数据存在倾斜,原始数据都是一个一个的 block,大小都一样,不存在数据倾斜: 而是指 shuffle 过程中产生的数据倾斜,由于不同的 ...
- Spark 调优之数据倾斜
什么是数据倾斜? Spark 的计算抽象如下 数据倾斜指的是:并行处理的数据集中,某一部分(如 Spark 或 Kafka 的一个 Partition)的数据显著多于其它部分,从而使得该部分的处理速度 ...
- 【转】解决Maxwell发送Kafka消息数据倾斜问题
最近用Maxwell解析MySQL的Binlog,发送到Kafka进行处理,测试的时候发现一个问题,就是Kafka的Offset严重倾斜,三个partition,其中一个的offset已经快200万了 ...
- 解决网页中Waiting (TTFB)数据加载过慢的问题
解决网页中Waiting (TTFB)数据加载过慢的问题 最近做了一个网页,在本地测试良好,数据可以得到很快的反馈,但是当部署到云端Linux上时候,就会出现加载缓慢的问题.本地测试,得到数据大概3s ...
- 【Spark调优】数据倾斜及排查
[数据倾斜及调优概述] 大数据分布式计算中一个常见的棘手问题——数据倾斜: 在进行shuffle的时候,必须将各个节点上相同的key拉取到某个节点上的一个task来进行处理,比如按照key进行聚合或j ...
- spark复习笔记(6):数据倾斜
一.数据倾斜 spark数据倾斜,map阶段对key进行重新划分.大量的数据在经过hash计算之后,进入到相同的分区中,zao
- spark性能调优 数据倾斜 内存不足 oom解决办法
[重要] Spark性能调优——扩展篇 : http://blog.csdn.net/zdy0_2004/article/details/51705043
- 如何在spark中读写cassandra数据 ---- 分布式计算框架spark学习之六
由于预处理的数据都存储在cassandra里面,所以想要用spark进行数据分析的话,需要读取cassandra数据,并把分析结果也一并存回到cassandra:因此需要研究一下spark如何读写ca ...
随机推荐
- bs和cs
CS(Client/Server):客户端----服务器结构.C/S结构在技术上很成熟,它的主要特点是交互性强.具有安全的存取模式.网络通信量低.响应速度快.利于处理大量数据.因为客户端要负责绝大多数 ...
- [leetcode DP]53. Maximum Subarray
Find the contiguous subarray within an array (containing at least one number) which has the largest ...
- 【BZOJ 3470】3470: Freda’s Walk 期望
3470: Freda’s Walk Time Limit: 1 Sec Memory Limit: 128 MBSubmit: 42 Solved: 22 Description 雨后的Poet ...
- CentOS的利手:“Screen”一个可以在多个进程之间多路复用一个物理终端的窗口管理器
你是不是经常需要远程登录到Linux服务器?你是不是经常为一些长时间运行的任务头疼?还在用 nohup 吗?那 么来看看 screen 吧,它会给你一个惊喜! 你是不是经常需要 SSH 或者 tele ...
- 【失踪人口回归】第11届东北地区大学生程序设计竞赛——Time to make some change
对哈尔滨出租车和纸质题目和2148473647的吐槽都被毕克神牛在知乎上(https://www.zhihu.com/question/59782275/answer/169402588)pick/b ...
- 3、Redis中对String类型的操作命令
写在前面的话:读书破万卷,编码如有神 -------------------------------------------------------------------- ------------ ...
- 【转 记录】python中的encode以及decode
字符串编码常用类型:utf-8,gb2312,cp936,gbk等. python中,我们使用decode()和encode()来进行解码和编码 在python中,使用unicode类型作为编码的基础 ...
- react父子组件数据传递
子传父 1.首先父组件设定一个自定义函数 getChildDatas = (values) => { //...业务代码 } 2.将该函数暴露在子组件的引用上 <Child getChil ...
- 1588: [HNOI2002]营业额统计 (splay tree)
1588: [HNOI2002]营业额统计 Time Limit: 5 Sec Memory Limit: 162 MBSubmit: 5783 Solved: 1859[Submit][Stat ...
- 由ORA-28001同一时候带出ORA-28000的解决的方法
今天,在登录tomcat前台界面时发现不能登录,查看log后发现原来是ORA-28001: the password has expired的错误,这个错误是因为Oracle11G的新特性所致, Or ...