题意:有两种物品分别为n,m个,每种物品对应价值k1,k2。有一个容量为c的背包,每次将一个物品放入背包所获取的价值为k1/k2*放入物品后的剩余体积。求问所获取的最大价值。

整体来看,优先放入体积较小的物品所获取的价值会更大。但是有两种物品,k1,k2不同,所以还需要考虑放入两种物品的先后。那么,可以写成状态转移方程,dp[i][j]=max(dp[i-1][j]+k1*(c-suma[i]-sumb[j]),dp[i][j-1]+k2*(c-suma[i]-sumb[j])),方程代表在先放入第一种物品的第i个,或第二种物品的第j个中选取更优的情况。

PS.没有dp数组清零,导致wa。

 #include<iostream>
#include<cstring>
#include<algorithm>
#define maxn 2005
using namespace std;
long long a[maxn],b[maxn],suma[maxn],sumb[maxn];
long long dp[maxn][maxn];
int k1,k2,c;
int n,m;
int main(){
int t;
cin >> t;
while (t--){
cin >> k1 >> k2 >> c;
cin >> n >> m;
for (int i=;i<=n;i++) cin >> a[i];
for (int i=;i<=m;i++) cin >> b[i];
a[]=;b[]=;suma[]=;sumb[]=;
sort(a+,a++n);
sort(b+,b++m);
for (int i=;i<=n;i++){
suma[i]=suma[i-]+a[i];
}
for (int i=;i<=m;i++){
sumb[i]=sumb[i-]+b[i];
} long long ans=;
for (int i=;i<=n;i++){
for (int j=;j<=m;j++){
dp[i][j]=;
}
}
for (int i=;i<=n;i++){
dp[i][]=dp[i-][]+k1*(c-suma[i]);
ans=max(ans,dp[i][]);
}
for (int j=;j<=m;j++){
dp[][j]=dp[][j-]+k2*(c-sumb[j]);
ans=max(ans,dp[][j]);
}
for (int i=;i<=n;i++){
for (int j=;j<=m;j++){
long long tmp=suma[i]+sumb[j];
if (tmp<=c)
dp[i][j]=max(dp[i-][j]+k1*(c-tmp),dp[i][j-]+k2*(c-tmp)); //先选取第一种物品中的第i个,或第二种物品中的第j个
ans=max(ans,dp[i][j]);
}
} cout << ans << endl;
}
return ;
}

zoj4019 Schrödinger's Knapsack(dp)的更多相关文章

  1. LightOJ 1033 Generating Palindromes(dp)

    LightOJ 1033  Generating Palindromes(dp) 题目链接:http://acm.hust.edu.cn/vjudge/contest/view.action?cid= ...

  2. lightOJ 1047 Neighbor House (DP)

    lightOJ 1047   Neighbor House (DP) 题目链接:http://acm.hust.edu.cn/vjudge/contest/view.action?cid=87730# ...

  3. UVA11125 - Arrange Some Marbles(dp)

    UVA11125 - Arrange Some Marbles(dp) option=com_onlinejudge&Itemid=8&category=24&page=sho ...

  4. 【CF618F】Double Knapsack(构造)

    [CF618F]Double Knapsack(构造) 题面 洛谷 Codeforces 题解 很妙的一道题. 发现找两个数集很不爽,我们强制加强限制,我们来找两个区间,使得他们的区间和相等. 把区间 ...

  5. 【POJ 3071】 Football(DP)

    [POJ 3071] Football(DP) Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 4350   Accepted ...

  6. 初探动态规划(DP)

    学习qzz的命名,来写一篇关于动态规划(dp)的入门博客. 动态规划应该算是一个入门oier的坑,动态规划的抽象即神奇之处,让很多萌新 萌比. 写这篇博客的目标,就是想要用一些容易理解的方式,讲解入门 ...

  7. Tour(dp)

    Tour(dp) 给定平面上n(n<=1000)个点的坐标(按照x递增的顺序),各点x坐标不同,且均为正整数.请设计一条路线,从最左边的点出发,走到最右边的点后再返回,要求除了最左点和最右点之外 ...

  8. 2017百度之星资格赛 1003:度度熊与邪恶大魔王(DP)

    .navbar-nav > li.active > a { background-image: none; background-color: #058; } .navbar-invers ...

  9. Leetcode之动态规划(DP)专题-详解983. 最低票价(Minimum Cost For Tickets)

    Leetcode之动态规划(DP)专题-983. 最低票价(Minimum Cost For Tickets) 在一个火车旅行很受欢迎的国度,你提前一年计划了一些火车旅行.在接下来的一年里,你要旅行的 ...

随机推荐

  1. 利用ks构建ISO中的一些坑

    构建ISO的基本流程 1.获取rpm包源码 2.将源码增量编译成二进制包 3.编写ks的包列表决定ISO制作时需要从什么地方(二进制仓库repo)取哪些二进制包 4.通过createiso命令并指定k ...

  2. 4. Configure maven in Spring Tool Suite

    First of all, you need to copy the folder named like: Choose Window->Preferences->Maven->Us ...

  3. Windows10 Virtualization Technology虚拟化技术功能

    为什么要开启VT功能,做机器学习环境搭建.运用Docker容器等等,所以首先要确认一下机器是否已经开启了VT技术功能,以此记录一下经历而已. VT是什么?为什么要开启VT?VT是一种虚拟化技术,可以扩 ...

  4. DB2错误码

    SQL语句成功完成 01xxx SQL语句成功完成,但是有警告 + 未限定的列名被解释为一个有相互联系的引用 + 动态SQL语句用分号结束 + 没有找到满足SQL语句的行 + 用DATA CAPTUR ...

  5. nodejs的优点

    nodejs主要用于搭建高性能的web服务器,优点如下: 可以解决高并发,它是单线程,当访问量很多时,将访问者分配到不同的内存中,不同的内存区做不同的事,以快速解决这个线程.就像医院的分科室看病人.效 ...

  6. 2018.10.16 NOIP模拟 膜法(组合数学)

    传送门 原题,原题,全TM原题. 不得不说天天考原题. 其实这题我上个月做过类似的啊,加上dzyodzyodzyo之前有讲过考试直接切了. 要求的其实就是∑i=lr(ii−l+k)\sum _{i=l ...

  7. 2018.08.20 loj#115. 无源汇有上下界可行流(模板)

    传送门 又get到一个新技能,好兴奋的说啊. 一道无源汇有上下界可行流的模板题. 其实这东西也不难,就是将下界变形而已. 准确来说,就是对于每个点,我们算出会从它那里强制流入与流出的流量,然后与超级源 ...

  8. 2018.07.07 BZOJ2212: Poi2011Tree Rotations(线段树合并)

    2212: [Poi2011]Tree Rotations Time Limit: 20 Sec Memory Limit: 259 MB Description Byteasar the garde ...

  9. [GO]关于go的waitgroup

    watigroup是用来控制一组goroutine的,用来等待一组goroutine结束 比如关于kafka的消费者代码除了生硬的让程序等待一个小时,也可以这样写 package main impor ...

  10. 使用ntpdate校正linux系统的时间

    当Linux服务器的时间不对的时候,可以使用ntpdate工具来校正时间. 安装:yum install ntpdate ntpdate简单用法: # ntpdate ip # ntpdate 210 ...