题意:有两种物品分别为n,m个,每种物品对应价值k1,k2。有一个容量为c的背包,每次将一个物品放入背包所获取的价值为k1/k2*放入物品后的剩余体积。求问所获取的最大价值。

整体来看,优先放入体积较小的物品所获取的价值会更大。但是有两种物品,k1,k2不同,所以还需要考虑放入两种物品的先后。那么,可以写成状态转移方程,dp[i][j]=max(dp[i-1][j]+k1*(c-suma[i]-sumb[j]),dp[i][j-1]+k2*(c-suma[i]-sumb[j])),方程代表在先放入第一种物品的第i个,或第二种物品的第j个中选取更优的情况。

PS.没有dp数组清零,导致wa。

 #include<iostream>
#include<cstring>
#include<algorithm>
#define maxn 2005
using namespace std;
long long a[maxn],b[maxn],suma[maxn],sumb[maxn];
long long dp[maxn][maxn];
int k1,k2,c;
int n,m;
int main(){
int t;
cin >> t;
while (t--){
cin >> k1 >> k2 >> c;
cin >> n >> m;
for (int i=;i<=n;i++) cin >> a[i];
for (int i=;i<=m;i++) cin >> b[i];
a[]=;b[]=;suma[]=;sumb[]=;
sort(a+,a++n);
sort(b+,b++m);
for (int i=;i<=n;i++){
suma[i]=suma[i-]+a[i];
}
for (int i=;i<=m;i++){
sumb[i]=sumb[i-]+b[i];
} long long ans=;
for (int i=;i<=n;i++){
for (int j=;j<=m;j++){
dp[i][j]=;
}
}
for (int i=;i<=n;i++){
dp[i][]=dp[i-][]+k1*(c-suma[i]);
ans=max(ans,dp[i][]);
}
for (int j=;j<=m;j++){
dp[][j]=dp[][j-]+k2*(c-sumb[j]);
ans=max(ans,dp[][j]);
}
for (int i=;i<=n;i++){
for (int j=;j<=m;j++){
long long tmp=suma[i]+sumb[j];
if (tmp<=c)
dp[i][j]=max(dp[i-][j]+k1*(c-tmp),dp[i][j-]+k2*(c-tmp)); //先选取第一种物品中的第i个,或第二种物品中的第j个
ans=max(ans,dp[i][j]);
}
} cout << ans << endl;
}
return ;
}

zoj4019 Schrödinger's Knapsack(dp)的更多相关文章

  1. LightOJ 1033 Generating Palindromes(dp)

    LightOJ 1033  Generating Palindromes(dp) 题目链接:http://acm.hust.edu.cn/vjudge/contest/view.action?cid= ...

  2. lightOJ 1047 Neighbor House (DP)

    lightOJ 1047   Neighbor House (DP) 题目链接:http://acm.hust.edu.cn/vjudge/contest/view.action?cid=87730# ...

  3. UVA11125 - Arrange Some Marbles(dp)

    UVA11125 - Arrange Some Marbles(dp) option=com_onlinejudge&Itemid=8&category=24&page=sho ...

  4. 【CF618F】Double Knapsack(构造)

    [CF618F]Double Knapsack(构造) 题面 洛谷 Codeforces 题解 很妙的一道题. 发现找两个数集很不爽,我们强制加强限制,我们来找两个区间,使得他们的区间和相等. 把区间 ...

  5. 【POJ 3071】 Football(DP)

    [POJ 3071] Football(DP) Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 4350   Accepted ...

  6. 初探动态规划(DP)

    学习qzz的命名,来写一篇关于动态规划(dp)的入门博客. 动态规划应该算是一个入门oier的坑,动态规划的抽象即神奇之处,让很多萌新 萌比. 写这篇博客的目标,就是想要用一些容易理解的方式,讲解入门 ...

  7. Tour(dp)

    Tour(dp) 给定平面上n(n<=1000)个点的坐标(按照x递增的顺序),各点x坐标不同,且均为正整数.请设计一条路线,从最左边的点出发,走到最右边的点后再返回,要求除了最左点和最右点之外 ...

  8. 2017百度之星资格赛 1003:度度熊与邪恶大魔王(DP)

    .navbar-nav > li.active > a { background-image: none; background-color: #058; } .navbar-invers ...

  9. Leetcode之动态规划(DP)专题-详解983. 最低票价(Minimum Cost For Tickets)

    Leetcode之动态规划(DP)专题-983. 最低票价(Minimum Cost For Tickets) 在一个火车旅行很受欢迎的国度,你提前一年计划了一些火车旅行.在接下来的一年里,你要旅行的 ...

随机推荐

  1. 深入php内核,从底层c语言剖析php实现原理

    深入php内核,从底层c语言剖析php实现原理 非常好的电子书:http://www.cunmou.com/phpbook/preface.md   这是它的目录: PHP的生命周期 让我们从SAPI ...

  2. Rendering Resources

    1. Real-Time Rendering Resources http://www.realtimerendering.com/ 2. Books on Amazon http://www.ama ...

  3. Laravel 中使用原生的 PHPExcel

    1.安装 composer require maatwebsite/excel 之后,程序中就可以使用 PHPExcel 了 2.控制器中 public function export(Request ...

  4. 2018.07.17 CQOI2017 余数求和(整除分块)

    洛谷传送门 bzoj传送门 这道题要用到学习莫比乌斯反演时掌握的整除分块算法,也就是对于一个数n" role="presentation" style="pos ...

  5. android 蓝牙通讯编程 备忘

    1.启动App后: 判断->蓝牙是否打开(所有功能必须在打牙打开的情况下才能用) 已打开: 启动代码中的蓝牙通讯Service 未打开: 发布 打开蓝牙意图(系统),根据Activity返回进场 ...

  6. C#打印日志的小技巧

    public static void Log(params System.Object[] message) { string str = ""; if (message == n ...

  7. C++之类和对象的使用(二)

    析构函数 析构函数的作用并不是删除对象,而是在撤销对象占用的内存之前完成一系列清理工作,使这部分内存可以被程序分配给新对象使用.对象生命周期结束,程序就自动执行析构函数来完成这些工作. 析构函数是一种 ...

  8. gj3 Python数据模型(魔法函数)

    3.1 什么是魔法函数 类里面,实现某些特性的内置函数,类似 def __xx__(): 的形式. 不要自己定义XX,并不是和某个类挂钩的 class Company(object): def __i ...

  9. Java带图片预览功能的图片上传兼容火狐ie

    <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...

  10. Codeforces805D. Minimum number of steps 2017-05-05 08:46 240人阅读 评论(0) 收藏

    D. Minimum number of steps time limit per test 1 second memory limit per test 256 megabytes input st ...