LCA——树上倍增
首先,什么是LCA?
LCA:最近公共祖先
祖先:从当前点到根节点所经过的点,包括他自己,都是这个点的祖先
A和B的公共祖先:同时是A,B两点的祖先的点
A和B的最近公共祖先:深度最大的A和B的公共祖先
树上倍增:预处理nlog2n 求解nlog2n
原理大体描述:两个点都往上找,找到的第一个相同的点,就是他们的LCA
这里会有两个问题:
Q1:若两个点深度不同,可能会错开
Q2:若真一个一个往上找,时间太慢
对于Q1,如果两个点深度不同,而我们又需要它们深度相同,那就想办法让他们深度相同就行了呗,让更深的先跳到和另一个点深度一样,具体看代码
对于Q2,我们就要看标题了,很明显,用倍增可以缩减时间
原理讲得差不多了,是时候说怎么做了,实在不懂,代码有注释QWQ
首先,深搜一遍,目的是处理每个点的深度和f[i][j],深度用deap[]记录,f[i][j]的含义是i点向上跳2j个点所到达的点,在此之前,先处理log[i](跳i个点的j是多少,j就是前面提到的2j的j)
代码:

1 for(rll i=1;i<=n;++i)
2 {
3 lg[i]=lg[i-1]+(1<<lg[i-1]==i);//(1<<lg[i-1])先进行,然后判断是否相等
4 //如果相等,就说明(1<<lg[i-1])能跳到这里 lg[i]=log2(i)
5 }

1 oid dfs(ll u,ll fat)//u 子节点 fat u的父节点
2 {
3 f[u][0]=fat;//u向上跳1<<0(=1)个点就是父节点
4 deap[u]=deap[fat]+1;//深度为父节点+1
5 for(rll i=1;i<=lg[deap[u]];++i)//更新f数组
6 {
7 f[u][i]=f[f[u][i-1]][i-1];//倍增算法
8 }
9 for(rll i=head[u];i;i=e[i].nxt)//遍历边
10 {
11 ll v=e[i].v;
12 if(v!=fat)//判断到达的点是否是父节点(毕竟不能绕回去)
13 {
14 dfs(v,u);//继续搜索
15 }
16 }
17 }
然后,比较两点的深度,操作就是让深的跳到浅的,使得两点深度一样
代码:

1 if(deap[u]<deap[v])//保证u的深度比v大
2 {
3 u=u^v,v=u^v,u=u^v;//相当于swap(u,v); ^ 异或符号
4 }
5 while(deap[u]>deap[v])//如果两点深度不同,那就让深度大的点跳到和另一个点的深度
6 {
7 u=f[u][lg[deap[u]-deap[v]]-1];//更新u
8 //为什么-1,个人理解,做事要留有余地
9 }
现在,一样深了,此时如果A和B是同一个点了,那这个点就是他们的LCA,直接返回结束即可
1 if(u==v) return u;//如果是一个点,直接返回
否则,继续向下进行
两点同时向上跳,如果两点跳后仍不同,继续跳,同时更新值,如果相同,这里不确定该点是否是两点的LCA,因此,不更新值,将距离调小,继续跳(说白了就是不让他们相同),最后,他们肯定会跳到他们的LCA的孩子上(因为不让他们相等,距离又在不断减小,他们会距离LCA越来越近),返回当前点的父亲即可
代码:

1 for(rll i=lg[deap[u]]-1;i>=0;i--)//继续向上跳
2 {
3 if(f[u][i]!=f[v][i])//如果他们没碰面
4 {
5 u=f[u][i],v=f[v][i];//更新数值,继续跳
6 }
7 }
8 return f[u][0];//返回
完整代码:

1 #include<bits/stdc++.h>
2 #define ll long long
3 #define rll register long long
4 using namespace std;
5 const ll N=5e5+5;
6 ll n,m,s,cnt;
7 struct edge
8 {
9 ll u,v,nxt;
10 };
11 edge e[N<<1];//边表存树
12 ll head[N],deap[N],f[N][20],lg[N];
13 //head 记录该点发出的最后一条边 deap 该点的深度
14 //f[i][j] 第i号点向上跳(1<<j)个点后到达的点 lg 记录log,节约时间
15 inline ll read()//快读模板
16 {
17 ll x=0;
18 bool flag=false;//判断是否是负数
19 char ch=getchar();
20 while(ch<'0'||ch>'9')
21 {
22 if(ch=='-') flag=true;
23 ch=getchar();
24 }
25 while(ch>='0'&&ch<='9')
26 {
27 x=(x<<3)+(x<<1)+ch-'0';
28 //(x<<3)左移,相当于x乘8,(x<<1)相当于x乘2,乘法结合律,x乘了10
29 ch=getchar();
30 }
31 if(flag) return ~(x-1);//是负数,减1取反
32 return x;//是正数,直接输出
33 }//快读
34 void add(ll u,ll v)//建边
35 {
36 e[++cnt].u=u;//起始点
37 e[cnt].v=v;//终点
38 e[cnt].nxt=head[u];//记录边
39 head[u]=cnt;//更新最后的边
40 }
41 void dfs(ll u,ll fat)//u 子节点 fat u的父节点
42 {
43 f[u][0]=fat;//u向上跳1<<0(=1)个点就是父节点
44 deap[u]=deap[fat]+1;//深度为父节点+1
45 for(rll i=1;i<=lg[deap[u]];++i)//更新f数组
46 {
47 f[u][i]=f[f[u][i-1]][i-1];//倍增算法
48 }
49 for(rll i=head[u];i;i=e[i].nxt)//遍历边
50 {
51 ll v=e[i].v;
52 if(v!=fat)//判断到达的点是否是父节点(毕竟不能绕回去)
53 {
54 dfs(v,u);//继续搜索
55 }
56 }
57 }//搜索,填f数组
58 ll lca(ll u,ll v)
59 {
60 if(deap[u]<deap[v])//保证u的深度比v大
61 {
62 u=u^v,v=u^v,u=u^v;//相当于swap(u,v); ^ 异或符号
63 }
64 while(deap[u]>deap[v])//如果两点深度不同,那就让深度大的点跳到和另一个点的深度
65 {
66 u=f[u][lg[deap[u]-deap[v]]-1];//更新u
67 //为什么-1,个人理解,做事要留有余地
68 }
69 if(u==v) return u;//如果是一个点,直接返回
70 for(rll i=lg[deap[u]]-1;i>=0;i--)//继续向上跳
71 {
72 if(f[u][i]!=f[v][i])//如果他们没碰面
73 {
74 u=f[u][i],v=f[v][i];//更新数值,继续跳
75 }
76 }
77 return f[u][0];//返回
78 }//求lca
79 int main()
80 {
81 n=read(),m=read(),s=read();
82 for(rll i=1;i<n;++i)
83 {
84 ll u,v;
85 u=read(),v=read();
86 add(u,v);
87 add(v,u);
88 }
89 for(rll i=1;i<=n;++i)
90 {
91 lg[i]=lg[i-1]+(1<<lg[i-1]==i);//(1<<lg[i-1])先进行,然后判断是否相等
92 //如果相等,就说明(1<<lg[i-1])能跳到这里 lg[i]=log2(i)
93 }
94 dfs(s,0);
95 for(rll i=1;i<=m;++i)
96 {
97 ll a,b;
98 a=read(),b=read();
99 printf("%lld\n",lca(a,b));
100 }
101 return 0;
102 }
LCA——树上倍增的更多相关文章
- Codevs 2370 小机房的树 LCA 树上倍增
题目描述 Description 小机房有棵焕狗种的树,树上有N个节点,节点标号为0到N-1,有两只虫子名叫飘狗和大吉狗,分居在两个不同的节点上.有一天,他们想爬到一个节点上去搞基,但是作为两只虫子, ...
- HDU 4822 Tri-war(LCA树上倍增)(2013 Asia Regional Changchun)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4822 Problem Description Three countries, Red, Yellow ...
- LCA树上倍增
LCA就是最近公共祖先,比如 节点10和11的LCA就是8,9和3的LCA就是3. 我们这里讲一下用树上倍增来求LCA. 大家都可以写出暴力解法,两个节点依次一步一步往上爬,直到爬到了相同的一个节点. ...
- 关于树论【LCA树上倍增算法】
补了一发LCA,表示这东西表面上好像简单,但是细节真挺多. 我学的是树上倍增,倍增思想很有趣~~(爸爸的爸爸叫奶奶.偶不,爷爷)有一个跟st表非常类似的东西,f[i][j]表示j的第2^i的祖先,就是 ...
- 洛谷P3379lca,HDU2586,洛谷P1967货车运输,倍增lca,树上倍增
倍增lca板子洛谷P3379 #include<cstdio> struct E { int to,next; }e[]; ],anc[][],log2n,deep[],n,m,s,ne; ...
- LCA树上倍增求法
1.LCA LCA就是最近公共祖先(Least common ancestor),x,y的LCA记为z=LCA(x,y),满足z是x,y的公共祖先中深度最大的那一个(即离他们最近的那一个)qwq 2. ...
- NOIP2013 货车运输 (最大生成树+树上倍增LCA)
死磕一道题,中间发现倍增还是掌握的不熟 ,而且深刻理解:SB错误毁一生,憋了近2个小时才调对,不过还好一遍AC省了更多的事,不然我一定会疯掉的... 3287 货车运输 2013年NOIP全国联赛提高 ...
- 树上倍增求LCA及例题
先瞎扯几句 树上倍增的经典应用是求两个节点的LCA 当然它的作用不仅限于求LCA,还可以维护节点的很多信息 求LCA的方法除了倍增之外,还有树链剖分.离线tarjan ,这两种日后再讲(众人:其实是你 ...
- 两种lca的求法:树上倍增,tarjan
第一种:树上倍增 f[x,k]表示x的2^k辈祖先,即x向根结点走2^k步达到的结点. 初始条件:f[x][0]=fa[x] 递推式:f[x][k]=f[ f[x][k-1] ][k-1] 一次bfs ...
随机推荐
- k8s client-go源码分析 informer源码分析(2)-初始化与启动分析
k8s client-go源码分析 informer源码分析(2)-初始化与启动分析 前面一篇文章对k8s informer做了概要分析,本篇文章将对informer的初始化与启动进行分析. info ...
- 太极限了,JDK的这个BUG都能被我踩到
hello,大家好呀,我是小楼. 之前遇到个文件监听变更的问题,刚好这周末有空研究了一番,整理出来分享给大家. 从一次故障说起 我们还是从故障说起,这样更加贴近实际,也能让大家更快速理解背景. 有一个 ...
- Java学习笔记-基础语法Ⅶ-集合
集合 集合类特点:提供一种存储空间可变的存储模型,存储的数据容量可以随时发生改变 这里需要回顾一下,因为数组和字符串一旦创建,就不可改变,需要区分一下 import java.util.ArrayLi ...
- Spring Security之用户名+密码登录
自定义用户认证逻辑 处理用户信息获取逻辑 实现UserDetailsService接口 @Service public class MyUserDetailsService implements Us ...
- 以圆类 Circle 及立体图形类 Solid 为基础设计圆锥类 Cone
学习内容:以圆类 Circle 及立体图形类 Solid 为基础设计圆锥类 Cone 代码示例: import java.util.Scanner; class Point4{ private dou ...
- Fail2ban 简介
Fail2ban是一个基于日志的IP自动屏蔽工具.可以通过它来防止暴力破解攻击. Fail2ban通过扫描日志文件(例如/var/log/apache/error_log),并禁止恶意IP(太多的密码 ...
- CentOS 7.9 安装 zookeeper-3.7.0
1. 下载 Zookeeper Zookeeper 官网 使用 wget 下载: wget https://mirrors.bfsu.edu.cn/apache/zookeeper/zookeeper ...
- 深入C++05:运算符重载
运算符重载 1.复数类 运算符重载目的:使对象运算表现得和编译器内置类型一样: 复数类例子 #include<iostream> using namespace std; class CC ...
- 4. Docker自定义镜像
下面制作镜像: 此时,验证一下: 以上验证都是成功的,到此就可以把刚才建立并经过刚才运行并验证的镜像包通过各种方式传递给其他人来部署使用了,并且环境肯定是可你统一的.
- Spring Cloud入门看这一篇就够了
目录 SpringCloud微服务 架构演进 服务调用方式: Euraka服务注册中心 注册中心 服务提供者(服务注册) 服务消费者(服务发现) 服务续约 失效剔除和自我保护 Consul 特性 Co ...