[HAOI2007]理想的正方形

题目描述

有一个 \(a \times b\) 的整数组成的矩阵,现请你从中找出一个 \(n \times n\) 的正方形区域,使得该区域所有数中的最大值和最小值的差最小。

输入格式

第一行为 \(3\) 个整数,分别表示 \(a,b,n\) 的值。

第二行至第 \(a+1\) 行每行为 \(b\) 个非负整数,表示矩阵中相应位置上的数。每行相邻两数之间用一空格分隔。

输出格式

仅一个整数,为 \(a \times b\) 矩阵中所有“ \(n \times n\) 正方形区域中的最大整数和最小整数的差值”的最小值。

样例 #1

样例输入 #1

5 4 2
1 2 5 6
0 17 16 0
16 17 2 1
2 10 2 1
1 2 2 2

样例输出 #1

1

提示

问题规模。

矩阵中的所有数都不超过 \(1,000,000,000\)。

\(20\%\) 的数据 \(2 \le a,b \le 100,n \le a,n \le b,n \le 10\)。

\(100\%\) 的数据 \(2 \le a,b \le 1000,n \le a,n \le b,n \le 100\)。

题解

前置知识

试想一下,如果我们把\(a*b\)的矩阵改为长度为\(a\)的序列,要找的东西变成长度为\(n\)的子段,那不就变成单调队列之滑动窗口了嘛。

可以先看看我写的这篇关于滑动窗口的博客。

有了这些对单调队列的基本认知,我们不难想出一种本题的做法。

方法分析

首先可以将\(a*b\)的矩阵理解为\(b\)行长度为\(a\)的序列,然后对每一行的序列使用“滑动窗口”,这样就可以处理出每一行中长度为\(n\)的子段中所有数的最大值和最小值

我们用\(board[i][j]\)来存原来的矩阵,用\(x1[i][j]\)和\(x2[i][j]\)分别记录第\(i\)行第\(j\)个窗口的最小值和最大值。那么我们每一行就能产生\(b-n+1\)个窗口。处理出来的\(x1\)和\(x2\)规模就是\(a*(b-n+1)\).

for(int i=1;i<=a;i++)
{
int h=0,t=0;
memset(q1,0,sizeof(q1));
memset(q2,0,sizeof(q2));
for(int j=1;j<=b;j++)
{
while(h<=t&&j-q1[h]>=n) h++;
while(h<=t&&board[i][j]<board[i][q1[t]]) t--;
q1[++t]=j;
if(j>=n) x1[i][j-n+1]=board[i][q1[h]];
}
for(int j=1;j<=b;j++)
{
while(h<=t&&j-q2[h]>=n) h++;
while(h<=t&&board[i][j]>board[i][q2[t]]) t--;
q2[++t]=j;
if(j>=n) x2[i][j-n+1]=board[i][q2[h]];
}
}

然后我们在处理好的\(x1\)和\(x2\)基础上,对每一列使用“滑动窗口”。如果说每一行的滑动窗口是从左往右滑动的,那么每一列的滑动窗口就是从上往下滑动的。

我们用用\(y1[i][j]\)和\(y2[i][j]\)分别记录第\(i\)列第\(j\)个窗口的最小值和最大值。那么我们每一列就能产生\(a-n+1\)个窗口。处理出来的\(y1\)和\(y2\)规模就是\((a-n+1)*(b-n+1)\).

for(int i=1;i<=b-n+1;i++)
{
int h=0,t=0;
memset(q1,0,sizeof(q1));
memset(q2,0,sizeof(q2));
for(int j=1;j<=a;j++)
{
while(h<=t&&j-q1[h]>=n) h++;
while(h<=t&&x1[j][i]<x1[q1[t]][i]) t--;
q1[++t]=j;
if(j>=n) y1[j-n+1][i]=x1[q1[h]][i];
}
for(int j=1;j<=a;j++)
{
while(h<=t&&j-q2[h]>=n) h++;
while(h<=t&&x2[j][i]>x2[q2[t]][i]) t--;
q2[++t]=j;
if(j>=n) y2[j-n+1][i]=x2[q2[h]][i];
}
}

回想一下,\(x\)数组处理出的是每一行长度为\(n\)的子段中最小/最大值,\(y\)数组处理出的是\(x\)的基础上每一列长度为\(n\)的子段中最小/最大值,那么这样一来\(y\)数组中就是整个矩阵中\(n*n\)的正方形区域中的最小/最大值。

然后只需要遍历一遍,求出最小的\(y2[i][j]-y1[i][j]\)即可。

#include<iostream>
#include<cstring>
#include<cstdio>
#include<algorithm>
using namespace std;
const int N=1005;
int a,b,n;
int board[N][N];
int x1[N][N],x2[N][N],y1[N][N],y2[N][N];
int q1[N],q2[N];
int cntx1,cntx2,cnty1,cnty2;
int minn(int a,int b)
{
return a<b?a:b;
}
int ans=2147483647;
int main()
{
scanf("%d%d%d",&a,&b,&n);
for(int i=1;i<=a;i++)
for(int j=1;j<=b;j++)
scanf("%d",&board[i][j]);
for(int i=1;i<=a;i++)
{
int h=0,t=0;
memset(q1,0,sizeof(q1));
memset(q2,0,sizeof(q2));
for(int j=1;j<=b;j++)
{
while(h<=t&&j-q1[h]>=n) h++;
while(h<=t&&board[i][j]<board[i][q1[t]]) t--;
q1[++t]=j;
if(j>=n) x1[i][j-n+1]=board[i][q1[h]];
}
for(int j=1;j<=b;j++)
{
while(h<=t&&j-q2[h]>=n) h++;
while(h<=t&&board[i][j]>board[i][q2[t]]) t--;
q2[++t]=j;
if(j>=n) x2[i][j-n+1]=board[i][q2[h]];
}
}
memset(q1,0,sizeof(q1));
memset(q2,0,sizeof(q2));
for(int i=1;i<=b-n+1;i++)
{
int h=0,t=0;
memset(q1,0,sizeof(q1));
memset(q2,0,sizeof(q2));
for(int j=1;j<=a;j++)
{
while(h<=t&&j-q1[h]>=n) h++;
while(h<=t&&x1[j][i]<x1[q1[t]][i]) t--;
q1[++t]=j;
if(j>=n) y1[j-n+1][i]=x1[q1[h]][i];
}
for(int j=1;j<=a;j++)
{
while(h<=t&&j-q2[h]>=n) h++;
while(h<=t&&x2[j][i]>x2[q2[t]][i]) t--;
q2[++t]=j;
if(j>=n) y2[j-n+1][i]=x2[q2[h]][i];
}
}
for(int i=1;i<=a-n+1;i++)
for(int j=1;j<=b-n+1;j++)
ans=minn(ans,y2[i][j]-y1[i][j]);
printf("%d\n",ans);
return 0;
}

P2216 [HAOI2007]理想的正方形 方法记录的更多相关文章

  1. 洛谷 P2216 [HAOI2007]理想的正方形

    P2216 [HAOI2007]理想的正方形 题目描述 有一个a*b的整数组成的矩阵,现请你从中找出一个n*n的正方形区域,使得该区域所有数中的最大值和最小值的差最小. 输入输出格式 输入格式: 第一 ...

  2. P2216 [HAOI2007]理想的正方形 (单调队列)

    题目链接:P2216 [HAOI2007]理想的正方形 题目描述 有一个 \(a\times b\)的整数组成的矩阵,现请你从中找出一个 \(n\times n\)的正方形区域,使得该区域所有数中的最 ...

  3. P2216 [HAOI2007]理想的正方形

    题目描述 有一个a*b的整数组成的矩阵,现请你从中找出一个n*n的正方形区域,使得该区域所有数中的最大值和最小值的差最小. 输入输出格式 输入格式: 第一行为3个整数,分别表示a,b,n的值 第二行至 ...

  4. 洛谷 P2216 [HAOI2007]理想的正方形 || 二维RMQ的单调队列

    题目 这个题的算法核心就是求出以i,j为左上角,边长为n的矩阵中最小值和最大值.最小和最大值的求法类似. 单调队列做法: 以最小值为例: q1[i][j]表示第i行上,从j列开始的n列的最小值.$q1 ...

  5. [P2216] [HAOI2007]理想的正方形 「单调队列」

    思路:用单调队列分别维护行与列. 具体实现方法:是先用单调队列对每一行的值维护,并将a[][]每个区间的最大值,最小值分别存在X[][]和x[][]中. 那么X[][]与x[][]所存储的分别是1×n ...

  6. 洛谷P2216 HAOI2007 理想的正方形 (单调队列)

    题目就是要求在n*m的矩形中找出一个k*k的正方形(理想正方形),使得这个正方形内最值之差最小(就是要维护最大值和最小值),显然我们可以用单调队列维护. 但是二维平面上单调队列怎么用? 我们先对行处理 ...

  7. 【DP】【单调队列】洛谷 P2216 [HAOI2007]理想的正方形 题解

        算是单调队列的复习吧,不是很难 题目描述 有一个$a\times b$的整数组成的矩阵,现请你从中找出一个$n\times n$的正方形区域,使得该区域所有数中的最大值和最小值的差最小. 输入 ...

  8. P2216 [HAOI2007]理想的正方形(二维RMQ)

    题目描述 有一个a*b的整数组成的矩阵,现请你从中找出一个n*n的正方形区域,使得该区域所有数中的最大值和最小值的差最小. 输入输出格式 输入格式: 第一行为3个整数,分别表示a,b,n的值 第二行至 ...

  9. 洛谷P2216: [HAOI2007]理想的正方形 单调队列优化DP

    洛谷P2216 )逼着自己写DP 题意: 给定一个带有数字的矩阵,找出一个大小为n*n的矩阵,这个矩阵中最大值减最小值最小. 思路: 先处理出每一行每个格子到前面n个格子中的最大值和最小值.然后对每一 ...

随机推荐

  1. 《吐血整理》进阶系列教程-拿捏Fiddler抓包教程(9)-Fiddler如何设置捕获Https会话

    1.简介 由于近几年来各大网站越来越注重安全性都改成了https协议,不像前十几年前直接是http协议直接裸奔在互联网.还有的小伙伴或者童鞋们按照上一篇宏哥的配置都配置好了,想大展身手抓一下百度的包, ...

  2. 使用Python3将word文档和pdf电子书进行格式互转(兼容Windows/Linux)

    原文转载自「刘悦的技术博客」https://v3u.cn/a_id_96 一些重要文档格式之间的互转在目前显得尤为重要,pdf作为通用格式在现在各个平台上兼容性是最好的,所以写python脚本将这些w ...

  3. 使用.NET简单实现一个Redis的高性能克隆版(一)

    译者注 该原文是Ayende Rahien大佬业余自己在使用C# 和 .NET构建一个简单.高性能兼容Redis协议的数据库的经历. 首先这个"Redis"是非常简单的实现,但是他 ...

  4. react环境搭建及文件配置

    webpack简介 构建工具(基于Nodejs)node(v16)前端工程化. 环境搭建 创建一个空的package.json npm init webpack核心包(提供了API,插件) npm i ...

  5. Luogu2915 [USACO08NOV]奶牛混合起来Mixed Up Cows (状压DP)

    枚举末位状态 #include <iostream> #include <cstdio> #include <cstring> #include <algor ...

  6. Luogu2439 [SDOI2005]阶梯教室设备利用 (动态规划)

    同上一题,区间改左闭右开就双倍经验了.貌似可以跑最长路. #include <iostream> #include <cstdio> #include <cstring& ...

  7. 小技巧---eclipse 全选lib jar包

    按住shift键,点击第一个jar包,然后点击最后一个jar包,就全选了所有jar包,然后添加build path 添加到类路径

  8. {版本发布公告}HMS Core 6.6.0来啦

    分析服务 ◆ 留存分析支持¬将流失用户存为受众,开发者通过对流失人群的分层以及多维分析,在制定相关用户召回策略时将更有针对性: ◆ 原"受众分析"更名为"人群洞察&quo ...

  9. 【NOI P模拟赛】仙人掌(圆方树,树形DP)

    题面 n n n 个点, m m m 条边. 1 ≤ n ≤ 1 0 5 , n − 1 ≤ m ≤ 2 × 1 0 5 1\leq n\leq 10^5,n-1\leq m\leq 2\times1 ...

  10. 【NOI P模拟赛】寻找道路(bfs,最短路)

    题面 一道特殊的最短路题. 给一个 n n n 个点 m m m 条有向边的图,每条边上有数字 0 \tt0 0 或 1 \tt1 1 ,定义一个路径的长度为这个路径上依次经过的边上的数字拼在一起后在 ...