Most Distant Point from the Sea
Time Limit: 5000MS   Memory Limit: 65536K
Total Submissions: 3476   Accepted: 1596   Special Judge

Description

The main land of Japan called Honshu is an island surrounded by the sea. In such an island, it is natural to ask a question: “Where is the most distant point from the sea?” The answer to this question for Honshu was found in 1996. The most distant point is located in former Usuda Town, Nagano Prefecture, whose distance from the sea is 114.86 km.

In this problem, you are asked to write a program which, given a map of an island, finds the most distant point from the sea in the island, and reports its distance from the sea. In order to simplify the problem, we only consider maps representable by convex polygons.

Input

The input consists of multiple datasets. Each dataset represents a map of an island, which is a convex polygon. The format of a dataset is as follows.

n    
x1   y1
   
xn   yn

Every input item in a dataset is a non-negative integer. Two input items in a line are separated by a space.

n in the first line is the number of vertices of the polygon, satisfying 3 ≤ n ≤ 100. Subsequent n lines are the x- and y-coordinates of the n vertices. Line segments (xiyi)–(xi+1yi+1) (1 ≤ i ≤ n − 1) and the line segment (xnyn)–(x1y1) form the border of the polygon in counterclockwise order. That is, these line segments see the inside of the polygon in the left of their directions. All coordinate values are between 0 and 10000, inclusive.

You can assume that the polygon is simple, that is, its border never crosses or touches itself. As stated above, the given polygon is always a convex one.

The last dataset is followed by a line containing a single zero.

Output

For each dataset in the input, one line containing the distance of the most distant point from the sea should be output. An output line should not contain extra characters such as spaces. The answer should not have an error greater than 0.00001 (10−5). You may output any number of digits after the decimal point, provided that the above accuracy condition is satisfied.

Sample Input

4
0 0
10000 0
10000 10000
0 10000
3
0 0
10000 0
7000 1000
6
0 40
100 20
250 40
250 70
100 90
0 70
3
0 0
10000 10000
5000 5001
0

Sample Output

5000.000000
494.233641
34.542948
0.353553

Source

模板题,没啥说的

求在多边形内,到边的距离最大的点

枚举半径,用半平面交判断

/* ***********************************************
Author :kuangbin
Created Time :2013/8/18 15:11:26
File Name :F:\2013ACM练习\专题学习\计算几何\半平面交\POJ3525.cpp
************************************************ */ #include <stdio.h>
#include <string.h>
#include <iostream>
#include <algorithm>
#include <vector>
#include <queue>
#include <set>
#include <map>
#include <string>
#include <math.h>
#include <stdlib.h>
#include <time.h>
using namespace std;
const double eps = 1e-;
const double PI = acos(-1.0);
int sgn(double x)
{
if(fabs(x) < eps) return ;
if(x < ) return -;
else return ;
}
struct Point
{
double x,y;
Point(){}
Point(double _x,double _y)
{
x = _x; y = _y;
}
Point operator -(const Point &b)const
{
return Point(x - b.x, y - b.y);
}
double operator ^(const Point &b)const
{
return x*b.y - y*b.x;
}
double operator *(const Point &b)const
{
return x*b.x + y*b.y;
}
};
struct Line
{
Point s,e;
double k;
Line(){}
Line(Point _s,Point _e)
{
s = _s; e = _e;
k = atan2(e.y - s.y,e.x - s.x);
}
Point operator &(const Line &b)const
{
Point res = s;
double t = ((s - b.s)^(b.s - b.e))/((s - e)^(b.s - b.e));
res.x += (e.x - s.x)*t;
res.y += (e.y - s.y)*t;
return res;
}
};
//半平面交,直线的左边代表有效区域
bool HPIcmp(Line a,Line b)
{
if(fabs(a.k - b.k) > eps)return a.k < b.k;
return ((a.s - b.s)^(b.e - b.s)) < ;
}
Line Q[];
void HPI(Line line[], int n, Point res[], int &resn)
{
int tot = n;
sort(line,line+n,HPIcmp);
tot = ;
for(int i = ;i < n;i++)
if(fabs(line[i].k - line[i-].k) > eps)
line[tot++] = line[i];
int head = , tail = ;
Q[] = line[];
Q[] = line[];
resn = ;
for(int i = ; i < tot; i++)
{
if(fabs((Q[tail].e-Q[tail].s)^(Q[tail-].e-Q[tail-].s)) < eps || fabs((Q[head].e-Q[head].s)^(Q[head+].e-Q[head+].s)) < eps)
return;
while(head < tail && (((Q[tail]&Q[tail-]) - line[i].s)^(line[i].e-line[i].s)) > eps)
tail--;
while(head < tail && (((Q[head]&Q[head+]) - line[i].s)^(line[i].e-line[i].s)) > eps)
head++;
Q[++tail] = line[i];
}
while(head < tail && (((Q[tail]&Q[tail-]) - Q[head].s)^(Q[head].e-Q[head].s)) > eps)
tail--;
while(head < tail && (((Q[head]&Q[head-]) - Q[tail].s)^(Q[tail].e-Q[tail].e)) > eps)
head++;
if(tail <= head + )return;
for(int i = head; i < tail; i++)
res[resn++] = Q[i]&Q[i+];
if(head < tail - )
res[resn++] = Q[head]&Q[tail];
}
Point p[];
Line line[];
//*两点间距离
double dist(Point a,Point b)
{
return sqrt((a-b)*(a-b));
}
void change(Point a,Point b,Point &c,Point &d,double p)//将线段ab往左移动距离p
{
double len = dist(a,b);
double dx = (a.y - b.y)*p/len;
double dy = (b.x - a.x)*p/len;
c.x = a.x + dx; c.y = a.y + dy;
d.x = b.x + dx; d.y = b.y + dy;
}
Point pp[];
int main()
{
//freopen("in.txt","r",stdin);
//freopen("out.txt","w",stdout);
int n;
while(scanf("%d",&n) == && n)
{
for(int i = ;i < n;i++)
scanf("%lf%lf",&p[i].x,&p[i].y);
double l = , r = ;
double ans = ;
while(r - l >= eps)
{
double mid = (l+r)/;
for(int i = ;i < n;i++)
{
Point t1,t2;
change(p[i],p[(i+)%n],t1,t2,mid);
line[i] = Line(t1,t2);
}
int resn;
HPI(line,n,pp,resn);
if(resn == )
r = mid - eps;
else
{
ans = mid;
l = mid + eps;
}
}
printf("%.6f\n",ans);
}
return ;
}

POJ 3525 Most Distant Point from the Sea (半平面交+二分)的更多相关文章

  1. POJ 3525 Most Distant Point from the Sea [半平面交 二分]

    Most Distant Point from the Sea Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 5153   ...

  2. POJ 3525 Most Distant Point from the Sea (半平面交)

    Description The main land of Japan called Honshu is an island surrounded by the sea. In such an isla ...

  3. POJ 3525 Most Distant Point from the Sea

    http://poj.org/problem?id=3525 给出一个凸包,要求凸包内距离所有边的长度的最小值最大的是哪个 思路:二分答案,然后把凸包上的边移动这个距离,做半平面交看是否有解. #in ...

  4. LA 3890 Most Distant Point from the Sea(半平面交)

    Most Distant Point from the Sea [题目链接]Most Distant Point from the Sea [题目类型]半平面交 &题解: 蓝书279 二分答案 ...

  5. POJ 3525 Most Distant Point from the Sea (半平面交向内推进+二分半径)

    题目链接 题意 : 给你一个多边形,问你里边能够盛的下的最大的圆的半径是多少. 思路 :先二分半径r,半平面交向内推进r.模板题 #include <stdio.h> #include & ...

  6. POJ 3525 Most Distant Point from the Sea 二分+半平面交

    题目就是求多变形内部一点. 使得到任意边距离中的最小值最大. 那么我们想一下,可以发现其实求是看一个圆是否能放进这个多边形中. 那么我们就二分这个半径r,然后将多边形的每条边都往内退r距离. 求半平面 ...

  7. POJ3525 Most Distant Point from the Sea(半平面交)

    给你一个凸多边形,问在里面距离凸边形最远的点. 方法就是二分这个距离,然后将对应的半平面沿着法向平移这个距离,然后判断是否交集为空,为空说明这个距离太大了,否则太小了,二分即可. #pragma wa ...

  8. 简单几何(半平面交+二分) LA 3890 Most Distant Point from the Sea

    题目传送门 题意:凸多边形的小岛在海里,问岛上的点到海最远的距离. 分析:训练指南P279,二分答案,然后整个多边形往内部收缩,如果半平面交非空,那么这些点构成半平面,存在满足的点. /******* ...

  9. POJ 3525 半平面交+二分

    二分所能形成圆的最大距离,然后将每一条边都向内推进这个距离,最后所有边组合在一起判断时候存在内部点 #include <cstdio> #include <cstring> # ...

随机推荐

  1. 190.Reverse Bits---位运算

    题目链接:https://leetcode.com/problems/reverse-bits/description/ 题目大意:将数值的二进制反转. 法一(借鉴):由于是无符号32位整型,当二进制 ...

  2. hdu 2852 KiKi's K-Number (线段树)

    版权声明:本文为博主原创文章,未经博主允许不得转载. hdu 2852 题意: 一个容器,三种操作: (1) 加入一个数 e (2) 删除一个数 e,如果不存在则输出 No Elment! (3) 查 ...

  3. iOS 取消按钮高亮显示方法

    objective-C 第1种方法: 设置按钮的normal 与 highlighted 一样的图片, 不过如果你也需要selected状态下的图片, 就不能这么做, 这样做在取消选中状态的时候就会显 ...

  4. C/C++——C语言常用库函数

    本文转载自:https://blog.csdn.net/qq_36955347/article/details/71511900 一.数学函数 调用数学函数时,要求在源文件中包下以下命令行: #inc ...

  5. Porting of cURL to Android OS using NDK (from The Software Rogue)

    Porting of cURL to Android OS using NDK   In continuing my journey into Android territory, I decided ...

  6. office 文档转pdf

    本地先安装 金山wps,并确保可用 工程目录 1.使用前,先执行install.bat 安装jacob 到maven本地仓库 2.复制 jacob-1.18-M2-x64.dlljacob-1.18- ...

  7. 使用递归计算n的阶乘n!

    计算n! 观察公式2可以直接使用递归求解 C++代码如下: #include <iostream> using namespace std; unsigned func(unsigned ...

  8. CentOS系统初始化---不断更新中

    注意EOF不能有空格tab键 #get os version release=$(rpm -q --qf "%{VERSION}" $(rpm -q --whatprovides ...

  9. QString 与中文问题

    原文请看:http://www.cnblogs.com/phoenixlaozhu/articles/2553180.html (更新:本文的姊妹篇Qt5与中文问题) 首先呢,声明一下,QString ...

  10. Kail Linux渗透测试教程之ARP侦查Netdiscover端口扫描Zenmap与黑暗搜索引擎Shodan

    Kail Linux渗透测试教程之ARP侦查Netdiscover端口扫描Zenmap与黑暗搜索引擎Shodan ARP侦查工具——Netdiscover Netdiscover是一个主动/被动的AR ...