POJ 3525 Most Distant Point from the Sea (半平面交+二分)
|
Most Distant Point from the Sea
Description The main land of Japan called Honshu is an island surrounded by the sea. In such an island, it is natural to ask a question: “Where is the most distant point from the sea?” The answer to this question for Honshu was found in 1996. The most distant point is located in former Usuda Town, Nagano Prefecture, whose distance from the sea is 114.86 km. In this problem, you are asked to write a program which, given a map of an island, finds the most distant point from the sea in the island, and reports its distance from the sea. In order to simplify the problem, we only consider maps representable by convex polygons. Input The input consists of multiple datasets. Each dataset represents a map of an island, which is a convex polygon. The format of a dataset is as follows.
Every input item in a dataset is a non-negative integer. Two input items in a line are separated by a space. n in the first line is the number of vertices of the polygon, satisfying 3 ≤ n ≤ 100. Subsequent n lines are the x- and y-coordinates of the n vertices. Line segments (xi, yi)–(xi+1, yi+1) (1 ≤ i ≤ n − 1) and the line segment (xn, yn)–(x1, y1) form the border of the polygon in counterclockwise order. That is, these line segments see the inside of the polygon in the left of their directions. All coordinate values are between 0 and 10000, inclusive. You can assume that the polygon is simple, that is, its border never crosses or touches itself. As stated above, the given polygon is always a convex one. The last dataset is followed by a line containing a single zero. Output For each dataset in the input, one line containing the distance of the most distant point from the sea should be output. An output line should not contain extra characters such as spaces. The answer should not have an error greater than 0.00001 (10−5). You may output any number of digits after the decimal point, provided that the above accuracy condition is satisfied. Sample Input 4 Sample Output 5000.000000 Source |
||||||||||||||||||||||
模板题,没啥说的
求在多边形内,到边的距离最大的点
枚举半径,用半平面交判断
/* ***********************************************
Author :kuangbin
Created Time :2013/8/18 15:11:26
File Name :F:\2013ACM练习\专题学习\计算几何\半平面交\POJ3525.cpp
************************************************ */ #include <stdio.h>
#include <string.h>
#include <iostream>
#include <algorithm>
#include <vector>
#include <queue>
#include <set>
#include <map>
#include <string>
#include <math.h>
#include <stdlib.h>
#include <time.h>
using namespace std;
const double eps = 1e-;
const double PI = acos(-1.0);
int sgn(double x)
{
if(fabs(x) < eps) return ;
if(x < ) return -;
else return ;
}
struct Point
{
double x,y;
Point(){}
Point(double _x,double _y)
{
x = _x; y = _y;
}
Point operator -(const Point &b)const
{
return Point(x - b.x, y - b.y);
}
double operator ^(const Point &b)const
{
return x*b.y - y*b.x;
}
double operator *(const Point &b)const
{
return x*b.x + y*b.y;
}
};
struct Line
{
Point s,e;
double k;
Line(){}
Line(Point _s,Point _e)
{
s = _s; e = _e;
k = atan2(e.y - s.y,e.x - s.x);
}
Point operator &(const Line &b)const
{
Point res = s;
double t = ((s - b.s)^(b.s - b.e))/((s - e)^(b.s - b.e));
res.x += (e.x - s.x)*t;
res.y += (e.y - s.y)*t;
return res;
}
};
//半平面交,直线的左边代表有效区域
bool HPIcmp(Line a,Line b)
{
if(fabs(a.k - b.k) > eps)return a.k < b.k;
return ((a.s - b.s)^(b.e - b.s)) < ;
}
Line Q[];
void HPI(Line line[], int n, Point res[], int &resn)
{
int tot = n;
sort(line,line+n,HPIcmp);
tot = ;
for(int i = ;i < n;i++)
if(fabs(line[i].k - line[i-].k) > eps)
line[tot++] = line[i];
int head = , tail = ;
Q[] = line[];
Q[] = line[];
resn = ;
for(int i = ; i < tot; i++)
{
if(fabs((Q[tail].e-Q[tail].s)^(Q[tail-].e-Q[tail-].s)) < eps || fabs((Q[head].e-Q[head].s)^(Q[head+].e-Q[head+].s)) < eps)
return;
while(head < tail && (((Q[tail]&Q[tail-]) - line[i].s)^(line[i].e-line[i].s)) > eps)
tail--;
while(head < tail && (((Q[head]&Q[head+]) - line[i].s)^(line[i].e-line[i].s)) > eps)
head++;
Q[++tail] = line[i];
}
while(head < tail && (((Q[tail]&Q[tail-]) - Q[head].s)^(Q[head].e-Q[head].s)) > eps)
tail--;
while(head < tail && (((Q[head]&Q[head-]) - Q[tail].s)^(Q[tail].e-Q[tail].e)) > eps)
head++;
if(tail <= head + )return;
for(int i = head; i < tail; i++)
res[resn++] = Q[i]&Q[i+];
if(head < tail - )
res[resn++] = Q[head]&Q[tail];
}
Point p[];
Line line[];
//*两点间距离
double dist(Point a,Point b)
{
return sqrt((a-b)*(a-b));
}
void change(Point a,Point b,Point &c,Point &d,double p)//将线段ab往左移动距离p
{
double len = dist(a,b);
double dx = (a.y - b.y)*p/len;
double dy = (b.x - a.x)*p/len;
c.x = a.x + dx; c.y = a.y + dy;
d.x = b.x + dx; d.y = b.y + dy;
}
Point pp[];
int main()
{
//freopen("in.txt","r",stdin);
//freopen("out.txt","w",stdout);
int n;
while(scanf("%d",&n) == && n)
{
for(int i = ;i < n;i++)
scanf("%lf%lf",&p[i].x,&p[i].y);
double l = , r = ;
double ans = ;
while(r - l >= eps)
{
double mid = (l+r)/;
for(int i = ;i < n;i++)
{
Point t1,t2;
change(p[i],p[(i+)%n],t1,t2,mid);
line[i] = Line(t1,t2);
}
int resn;
HPI(line,n,pp,resn);
if(resn == )
r = mid - eps;
else
{
ans = mid;
l = mid + eps;
}
}
printf("%.6f\n",ans);
}
return ;
}
POJ 3525 Most Distant Point from the Sea (半平面交+二分)的更多相关文章
- POJ 3525 Most Distant Point from the Sea [半平面交 二分]
Most Distant Point from the Sea Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 5153 ...
- POJ 3525 Most Distant Point from the Sea (半平面交)
Description The main land of Japan called Honshu is an island surrounded by the sea. In such an isla ...
- POJ 3525 Most Distant Point from the Sea
http://poj.org/problem?id=3525 给出一个凸包,要求凸包内距离所有边的长度的最小值最大的是哪个 思路:二分答案,然后把凸包上的边移动这个距离,做半平面交看是否有解. #in ...
- LA 3890 Most Distant Point from the Sea(半平面交)
Most Distant Point from the Sea [题目链接]Most Distant Point from the Sea [题目类型]半平面交 &题解: 蓝书279 二分答案 ...
- POJ 3525 Most Distant Point from the Sea (半平面交向内推进+二分半径)
题目链接 题意 : 给你一个多边形,问你里边能够盛的下的最大的圆的半径是多少. 思路 :先二分半径r,半平面交向内推进r.模板题 #include <stdio.h> #include & ...
- POJ 3525 Most Distant Point from the Sea 二分+半平面交
题目就是求多变形内部一点. 使得到任意边距离中的最小值最大. 那么我们想一下,可以发现其实求是看一个圆是否能放进这个多边形中. 那么我们就二分这个半径r,然后将多边形的每条边都往内退r距离. 求半平面 ...
- POJ3525 Most Distant Point from the Sea(半平面交)
给你一个凸多边形,问在里面距离凸边形最远的点. 方法就是二分这个距离,然后将对应的半平面沿着法向平移这个距离,然后判断是否交集为空,为空说明这个距离太大了,否则太小了,二分即可. #pragma wa ...
- 简单几何(半平面交+二分) LA 3890 Most Distant Point from the Sea
题目传送门 题意:凸多边形的小岛在海里,问岛上的点到海最远的距离. 分析:训练指南P279,二分答案,然后整个多边形往内部收缩,如果半平面交非空,那么这些点构成半平面,存在满足的点. /******* ...
- POJ 3525 半平面交+二分
二分所能形成圆的最大距离,然后将每一条边都向内推进这个距离,最后所有边组合在一起判断时候存在内部点 #include <cstdio> #include <cstring> # ...
随机推荐
- glom模块的使用(二)
上次我们说到golm的简单应用这次我们继续带结构化数据的其他操作进行学习. Literal 用法:class glom.Literal(value) 这个方法的功能主要是添加自定义的键值. 例如: f ...
- python之smtplib库学习
# -*- coding:utf-8 -*- import smtplibfrom email.mime.text import MIMETextfrom email import encodersf ...
- htaccess附录:正则表达式、重定向代码
.htaccess正则表达式 # 位于行首时表示注释. [F] Forbidden(禁止): 命令服务器返回 403 Forbidden错误给用户浏览器 [L] Last rule(最后一条规则): ...
- IT行业经典面试技巧及方法思路。
问题1:为什么从上家公司离职?”能说说原因吗? 首先,作为一个从事招聘的HR,并不认为追问面试者为什么从上一家公司离职是个明智的做法起码不应该在面试一开始就抛出这个问题,一个较为明显的原因是因为这会引 ...
- php琐碎
1.类中的常量,可以用类来引用: class MyClass() { const SUCCESS ="success"; const FAIL ="fail"; ...
- CGIC简明教程(转摘)
CGIC简明教程 本系列的目的是演示如何使用C语言的CGI库“CGIC”完成Web开发的各种要求. ********************************* 基础知识 1 ...
- js求连个数之间的数字
整理出自项目中一个需求,求两个数之间的数字. const week = function(arr,arr2){ let a=parseInt(arr); let b=parseInt(arr2); l ...
- Codeforces Round #371 (Div. 1) C - Sonya and Problem Wihtout a Legend
C - Sonya and Problem Wihtout a Legend 思路:感觉没有做过这种套路题完全不会啊.. 把严格单调递增转换成非严格单调递增,所有可能出现的数字就变成了原数组出现过的数 ...
- logstash收集rsyslog日志
(1)rsyslog配置 在192.168.1.31配置 #vim /etc/rsyslog.conf *.* @@192.168.1.32:514 //所有设备名,所有日志级别都发送到192.168 ...
- 【笔试题】Java 中如何递归显示一个目录下面的所有目录和文件?
笔试题 Java 中如何递归显示一个目录下面的所有目录和文件? import java.io.File; public class Test { private static void showDir ...