Most Distant Point from the Sea
Time Limit: 5000MS   Memory Limit: 65536K
Total Submissions: 3476   Accepted: 1596   Special Judge

Description

The main land of Japan called Honshu is an island surrounded by the sea. In such an island, it is natural to ask a question: “Where is the most distant point from the sea?” The answer to this question for Honshu was found in 1996. The most distant point is located in former Usuda Town, Nagano Prefecture, whose distance from the sea is 114.86 km.

In this problem, you are asked to write a program which, given a map of an island, finds the most distant point from the sea in the island, and reports its distance from the sea. In order to simplify the problem, we only consider maps representable by convex polygons.

Input

The input consists of multiple datasets. Each dataset represents a map of an island, which is a convex polygon. The format of a dataset is as follows.

n    
x1   y1
   
xn   yn

Every input item in a dataset is a non-negative integer. Two input items in a line are separated by a space.

n in the first line is the number of vertices of the polygon, satisfying 3 ≤ n ≤ 100. Subsequent n lines are the x- and y-coordinates of the n vertices. Line segments (xiyi)–(xi+1yi+1) (1 ≤ i ≤ n − 1) and the line segment (xnyn)–(x1y1) form the border of the polygon in counterclockwise order. That is, these line segments see the inside of the polygon in the left of their directions. All coordinate values are between 0 and 10000, inclusive.

You can assume that the polygon is simple, that is, its border never crosses or touches itself. As stated above, the given polygon is always a convex one.

The last dataset is followed by a line containing a single zero.

Output

For each dataset in the input, one line containing the distance of the most distant point from the sea should be output. An output line should not contain extra characters such as spaces. The answer should not have an error greater than 0.00001 (10−5). You may output any number of digits after the decimal point, provided that the above accuracy condition is satisfied.

Sample Input

4
0 0
10000 0
10000 10000
0 10000
3
0 0
10000 0
7000 1000
6
0 40
100 20
250 40
250 70
100 90
0 70
3
0 0
10000 10000
5000 5001
0

Sample Output

5000.000000
494.233641
34.542948
0.353553

Source

模板题,没啥说的

求在多边形内,到边的距离最大的点

枚举半径,用半平面交判断

/* ***********************************************
Author :kuangbin
Created Time :2013/8/18 15:11:26
File Name :F:\2013ACM练习\专题学习\计算几何\半平面交\POJ3525.cpp
************************************************ */ #include <stdio.h>
#include <string.h>
#include <iostream>
#include <algorithm>
#include <vector>
#include <queue>
#include <set>
#include <map>
#include <string>
#include <math.h>
#include <stdlib.h>
#include <time.h>
using namespace std;
const double eps = 1e-;
const double PI = acos(-1.0);
int sgn(double x)
{
if(fabs(x) < eps) return ;
if(x < ) return -;
else return ;
}
struct Point
{
double x,y;
Point(){}
Point(double _x,double _y)
{
x = _x; y = _y;
}
Point operator -(const Point &b)const
{
return Point(x - b.x, y - b.y);
}
double operator ^(const Point &b)const
{
return x*b.y - y*b.x;
}
double operator *(const Point &b)const
{
return x*b.x + y*b.y;
}
};
struct Line
{
Point s,e;
double k;
Line(){}
Line(Point _s,Point _e)
{
s = _s; e = _e;
k = atan2(e.y - s.y,e.x - s.x);
}
Point operator &(const Line &b)const
{
Point res = s;
double t = ((s - b.s)^(b.s - b.e))/((s - e)^(b.s - b.e));
res.x += (e.x - s.x)*t;
res.y += (e.y - s.y)*t;
return res;
}
};
//半平面交,直线的左边代表有效区域
bool HPIcmp(Line a,Line b)
{
if(fabs(a.k - b.k) > eps)return a.k < b.k;
return ((a.s - b.s)^(b.e - b.s)) < ;
}
Line Q[];
void HPI(Line line[], int n, Point res[], int &resn)
{
int tot = n;
sort(line,line+n,HPIcmp);
tot = ;
for(int i = ;i < n;i++)
if(fabs(line[i].k - line[i-].k) > eps)
line[tot++] = line[i];
int head = , tail = ;
Q[] = line[];
Q[] = line[];
resn = ;
for(int i = ; i < tot; i++)
{
if(fabs((Q[tail].e-Q[tail].s)^(Q[tail-].e-Q[tail-].s)) < eps || fabs((Q[head].e-Q[head].s)^(Q[head+].e-Q[head+].s)) < eps)
return;
while(head < tail && (((Q[tail]&Q[tail-]) - line[i].s)^(line[i].e-line[i].s)) > eps)
tail--;
while(head < tail && (((Q[head]&Q[head+]) - line[i].s)^(line[i].e-line[i].s)) > eps)
head++;
Q[++tail] = line[i];
}
while(head < tail && (((Q[tail]&Q[tail-]) - Q[head].s)^(Q[head].e-Q[head].s)) > eps)
tail--;
while(head < tail && (((Q[head]&Q[head-]) - Q[tail].s)^(Q[tail].e-Q[tail].e)) > eps)
head++;
if(tail <= head + )return;
for(int i = head; i < tail; i++)
res[resn++] = Q[i]&Q[i+];
if(head < tail - )
res[resn++] = Q[head]&Q[tail];
}
Point p[];
Line line[];
//*两点间距离
double dist(Point a,Point b)
{
return sqrt((a-b)*(a-b));
}
void change(Point a,Point b,Point &c,Point &d,double p)//将线段ab往左移动距离p
{
double len = dist(a,b);
double dx = (a.y - b.y)*p/len;
double dy = (b.x - a.x)*p/len;
c.x = a.x + dx; c.y = a.y + dy;
d.x = b.x + dx; d.y = b.y + dy;
}
Point pp[];
int main()
{
//freopen("in.txt","r",stdin);
//freopen("out.txt","w",stdout);
int n;
while(scanf("%d",&n) == && n)
{
for(int i = ;i < n;i++)
scanf("%lf%lf",&p[i].x,&p[i].y);
double l = , r = ;
double ans = ;
while(r - l >= eps)
{
double mid = (l+r)/;
for(int i = ;i < n;i++)
{
Point t1,t2;
change(p[i],p[(i+)%n],t1,t2,mid);
line[i] = Line(t1,t2);
}
int resn;
HPI(line,n,pp,resn);
if(resn == )
r = mid - eps;
else
{
ans = mid;
l = mid + eps;
}
}
printf("%.6f\n",ans);
}
return ;
}

POJ 3525 Most Distant Point from the Sea (半平面交+二分)的更多相关文章

  1. POJ 3525 Most Distant Point from the Sea [半平面交 二分]

    Most Distant Point from the Sea Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 5153   ...

  2. POJ 3525 Most Distant Point from the Sea (半平面交)

    Description The main land of Japan called Honshu is an island surrounded by the sea. In such an isla ...

  3. POJ 3525 Most Distant Point from the Sea

    http://poj.org/problem?id=3525 给出一个凸包,要求凸包内距离所有边的长度的最小值最大的是哪个 思路:二分答案,然后把凸包上的边移动这个距离,做半平面交看是否有解. #in ...

  4. LA 3890 Most Distant Point from the Sea(半平面交)

    Most Distant Point from the Sea [题目链接]Most Distant Point from the Sea [题目类型]半平面交 &题解: 蓝书279 二分答案 ...

  5. POJ 3525 Most Distant Point from the Sea (半平面交向内推进+二分半径)

    题目链接 题意 : 给你一个多边形,问你里边能够盛的下的最大的圆的半径是多少. 思路 :先二分半径r,半平面交向内推进r.模板题 #include <stdio.h> #include & ...

  6. POJ 3525 Most Distant Point from the Sea 二分+半平面交

    题目就是求多变形内部一点. 使得到任意边距离中的最小值最大. 那么我们想一下,可以发现其实求是看一个圆是否能放进这个多边形中. 那么我们就二分这个半径r,然后将多边形的每条边都往内退r距离. 求半平面 ...

  7. POJ3525 Most Distant Point from the Sea(半平面交)

    给你一个凸多边形,问在里面距离凸边形最远的点. 方法就是二分这个距离,然后将对应的半平面沿着法向平移这个距离,然后判断是否交集为空,为空说明这个距离太大了,否则太小了,二分即可. #pragma wa ...

  8. 简单几何(半平面交+二分) LA 3890 Most Distant Point from the Sea

    题目传送门 题意:凸多边形的小岛在海里,问岛上的点到海最远的距离. 分析:训练指南P279,二分答案,然后整个多边形往内部收缩,如果半平面交非空,那么这些点构成半平面,存在满足的点. /******* ...

  9. POJ 3525 半平面交+二分

    二分所能形成圆的最大距离,然后将每一条边都向内推进这个距离,最后所有边组合在一起判断时候存在内部点 #include <cstdio> #include <cstring> # ...

随机推荐

  1. HDU 6205 2017沈阳网络赛 思维题

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6205 题意:给你n堆牌,原本每一堆的所有牌(a[i]张)默认向下,每次从第一堆开始,将固定个数的牌(b ...

  2. static变量和final变量

    1.static变量 按照是否静态的对类成员变量进行分类可分两种:一种是被static修饰的变量,叫静态变量或类变量:另一种是没有被static修饰的变量,叫实例变量.两者的区别是: 对于静态变量在内 ...

  3. acm专题--并查集

    题目来源:http://hihocoder.com/problemset/problem/1066 #1066 : 无间道之并查集 时间限制:20000ms 单点时限:1000ms 内存限制:256M ...

  4. 记一次测试环境下PXC集群问题《经验总结》

    1.问题描述                  当PXC集群节点全部宕机的,导致集群几点启动失败.报错导致无法启动   [ERROR] WSREP: It may not be safe to boo ...

  5. Codeforces 351D Jeff and Removing Periods(莫队+区间等差数列更新)

    题目链接:http://codeforces.com/problemset/problem/351/D 题目大意:有n个数,每次可以删除掉数值相同并且所在位置成等差数列的数(只删2个数或者只删1个数应 ...

  6. 用strtok函数分割字符串

    用strtok函数分割字符串 需要在loadrunner里面获得“15”(下面红色高亮的部分),并做成关联参数. //Body response 内容: <BODY><; PRE&g ...

  7. Jenkins hello world

    1. 点击[新建项目],选择如下: (2)点击[流水线],并键入以下图示代码. (3) 点击保存,并[立即构建].

  8. mysql打印输出转csv格式

    1. mysql打印输出放在input.csv中 2. 执行该文件 <?php $str = file_get_contents("./input.csv"); $str = ...

  9. ref:一系列用于Fuzzing学习的资源汇总

    ref:http://www.freebuf.com/articles/rookie/169413.html 一系列用于Fuzzing学习的资源汇总 secist2018-04-30共185833人围 ...

  10. 《java虚拟机》----java内存区域与内存溢出异常

    No1: java虚拟机所管理的内存将会包括以下几个运行时数据区域 1.方法区 2.虚拟机栈 3.本地方法栈 4.堆 5.程序计数器 No2: 程序计数器: 程序计数器(Program Counter ...