POJ 3525 Most Distant Point from the Sea (半平面交+二分)
|
Most Distant Point from the Sea
Description The main land of Japan called Honshu is an island surrounded by the sea. In such an island, it is natural to ask a question: “Where is the most distant point from the sea?” The answer to this question for Honshu was found in 1996. The most distant point is located in former Usuda Town, Nagano Prefecture, whose distance from the sea is 114.86 km. In this problem, you are asked to write a program which, given a map of an island, finds the most distant point from the sea in the island, and reports its distance from the sea. In order to simplify the problem, we only consider maps representable by convex polygons. Input The input consists of multiple datasets. Each dataset represents a map of an island, which is a convex polygon. The format of a dataset is as follows.
Every input item in a dataset is a non-negative integer. Two input items in a line are separated by a space. n in the first line is the number of vertices of the polygon, satisfying 3 ≤ n ≤ 100. Subsequent n lines are the x- and y-coordinates of the n vertices. Line segments (xi, yi)–(xi+1, yi+1) (1 ≤ i ≤ n − 1) and the line segment (xn, yn)–(x1, y1) form the border of the polygon in counterclockwise order. That is, these line segments see the inside of the polygon in the left of their directions. All coordinate values are between 0 and 10000, inclusive. You can assume that the polygon is simple, that is, its border never crosses or touches itself. As stated above, the given polygon is always a convex one. The last dataset is followed by a line containing a single zero. Output For each dataset in the input, one line containing the distance of the most distant point from the sea should be output. An output line should not contain extra characters such as spaces. The answer should not have an error greater than 0.00001 (10−5). You may output any number of digits after the decimal point, provided that the above accuracy condition is satisfied. Sample Input 4 Sample Output 5000.000000 Source |
||||||||||||||||||||||
模板题,没啥说的
求在多边形内,到边的距离最大的点
枚举半径,用半平面交判断
/* ***********************************************
Author :kuangbin
Created Time :2013/8/18 15:11:26
File Name :F:\2013ACM练习\专题学习\计算几何\半平面交\POJ3525.cpp
************************************************ */ #include <stdio.h>
#include <string.h>
#include <iostream>
#include <algorithm>
#include <vector>
#include <queue>
#include <set>
#include <map>
#include <string>
#include <math.h>
#include <stdlib.h>
#include <time.h>
using namespace std;
const double eps = 1e-;
const double PI = acos(-1.0);
int sgn(double x)
{
if(fabs(x) < eps) return ;
if(x < ) return -;
else return ;
}
struct Point
{
double x,y;
Point(){}
Point(double _x,double _y)
{
x = _x; y = _y;
}
Point operator -(const Point &b)const
{
return Point(x - b.x, y - b.y);
}
double operator ^(const Point &b)const
{
return x*b.y - y*b.x;
}
double operator *(const Point &b)const
{
return x*b.x + y*b.y;
}
};
struct Line
{
Point s,e;
double k;
Line(){}
Line(Point _s,Point _e)
{
s = _s; e = _e;
k = atan2(e.y - s.y,e.x - s.x);
}
Point operator &(const Line &b)const
{
Point res = s;
double t = ((s - b.s)^(b.s - b.e))/((s - e)^(b.s - b.e));
res.x += (e.x - s.x)*t;
res.y += (e.y - s.y)*t;
return res;
}
};
//半平面交,直线的左边代表有效区域
bool HPIcmp(Line a,Line b)
{
if(fabs(a.k - b.k) > eps)return a.k < b.k;
return ((a.s - b.s)^(b.e - b.s)) < ;
}
Line Q[];
void HPI(Line line[], int n, Point res[], int &resn)
{
int tot = n;
sort(line,line+n,HPIcmp);
tot = ;
for(int i = ;i < n;i++)
if(fabs(line[i].k - line[i-].k) > eps)
line[tot++] = line[i];
int head = , tail = ;
Q[] = line[];
Q[] = line[];
resn = ;
for(int i = ; i < tot; i++)
{
if(fabs((Q[tail].e-Q[tail].s)^(Q[tail-].e-Q[tail-].s)) < eps || fabs((Q[head].e-Q[head].s)^(Q[head+].e-Q[head+].s)) < eps)
return;
while(head < tail && (((Q[tail]&Q[tail-]) - line[i].s)^(line[i].e-line[i].s)) > eps)
tail--;
while(head < tail && (((Q[head]&Q[head+]) - line[i].s)^(line[i].e-line[i].s)) > eps)
head++;
Q[++tail] = line[i];
}
while(head < tail && (((Q[tail]&Q[tail-]) - Q[head].s)^(Q[head].e-Q[head].s)) > eps)
tail--;
while(head < tail && (((Q[head]&Q[head-]) - Q[tail].s)^(Q[tail].e-Q[tail].e)) > eps)
head++;
if(tail <= head + )return;
for(int i = head; i < tail; i++)
res[resn++] = Q[i]&Q[i+];
if(head < tail - )
res[resn++] = Q[head]&Q[tail];
}
Point p[];
Line line[];
//*两点间距离
double dist(Point a,Point b)
{
return sqrt((a-b)*(a-b));
}
void change(Point a,Point b,Point &c,Point &d,double p)//将线段ab往左移动距离p
{
double len = dist(a,b);
double dx = (a.y - b.y)*p/len;
double dy = (b.x - a.x)*p/len;
c.x = a.x + dx; c.y = a.y + dy;
d.x = b.x + dx; d.y = b.y + dy;
}
Point pp[];
int main()
{
//freopen("in.txt","r",stdin);
//freopen("out.txt","w",stdout);
int n;
while(scanf("%d",&n) == && n)
{
for(int i = ;i < n;i++)
scanf("%lf%lf",&p[i].x,&p[i].y);
double l = , r = ;
double ans = ;
while(r - l >= eps)
{
double mid = (l+r)/;
for(int i = ;i < n;i++)
{
Point t1,t2;
change(p[i],p[(i+)%n],t1,t2,mid);
line[i] = Line(t1,t2);
}
int resn;
HPI(line,n,pp,resn);
if(resn == )
r = mid - eps;
else
{
ans = mid;
l = mid + eps;
}
}
printf("%.6f\n",ans);
}
return ;
}
POJ 3525 Most Distant Point from the Sea (半平面交+二分)的更多相关文章
- POJ 3525 Most Distant Point from the Sea [半平面交 二分]
Most Distant Point from the Sea Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 5153 ...
- POJ 3525 Most Distant Point from the Sea (半平面交)
Description The main land of Japan called Honshu is an island surrounded by the sea. In such an isla ...
- POJ 3525 Most Distant Point from the Sea
http://poj.org/problem?id=3525 给出一个凸包,要求凸包内距离所有边的长度的最小值最大的是哪个 思路:二分答案,然后把凸包上的边移动这个距离,做半平面交看是否有解. #in ...
- LA 3890 Most Distant Point from the Sea(半平面交)
Most Distant Point from the Sea [题目链接]Most Distant Point from the Sea [题目类型]半平面交 &题解: 蓝书279 二分答案 ...
- POJ 3525 Most Distant Point from the Sea (半平面交向内推进+二分半径)
题目链接 题意 : 给你一个多边形,问你里边能够盛的下的最大的圆的半径是多少. 思路 :先二分半径r,半平面交向内推进r.模板题 #include <stdio.h> #include & ...
- POJ 3525 Most Distant Point from the Sea 二分+半平面交
题目就是求多变形内部一点. 使得到任意边距离中的最小值最大. 那么我们想一下,可以发现其实求是看一个圆是否能放进这个多边形中. 那么我们就二分这个半径r,然后将多边形的每条边都往内退r距离. 求半平面 ...
- POJ3525 Most Distant Point from the Sea(半平面交)
给你一个凸多边形,问在里面距离凸边形最远的点. 方法就是二分这个距离,然后将对应的半平面沿着法向平移这个距离,然后判断是否交集为空,为空说明这个距离太大了,否则太小了,二分即可. #pragma wa ...
- 简单几何(半平面交+二分) LA 3890 Most Distant Point from the Sea
题目传送门 题意:凸多边形的小岛在海里,问岛上的点到海最远的距离. 分析:训练指南P279,二分答案,然后整个多边形往内部收缩,如果半平面交非空,那么这些点构成半平面,存在满足的点. /******* ...
- POJ 3525 半平面交+二分
二分所能形成圆的最大距离,然后将每一条边都向内推进这个距离,最后所有边组合在一起判断时候存在内部点 #include <cstdio> #include <cstring> # ...
随机推荐
- git-定制属于你的log格式
软件版本: 操作系统:ubuntu10.04 内核版本:Linux version 2.6.32-36-generic git 版本:git version 1.7.0.4 1. ...
- 数据分析python应用到的ggplot(二)
还是优达学院的第七课 数据:https://s3.amazonaws.com/content.udacity-data.com/courses/ud359/hr_by_team_year_sf_la. ...
- google的面试题(三维动态规划的范例)——(87)Scramble String
转:http://www.cnblogs.com/easonliu/p/3696135.html 分析:这个问题是google的面试题.由于一个字符串有很多种二叉表示法,貌似很难判断两个字符串是否可以 ...
- 使用Python快速查询所有指定匹配KEY的办法
import redis redis_ip = '10.10.14.224' redis_port = 18890 # 配置redis的连接办法 # http://blog.csdn.net/u010 ...
- jmeter----计数器
在测试过程中,往往需要一些有一定规则的数字,这个时候,可以使用配置元件中的计数器去实现. 一.界面显示 二.配置说明 1.名称:标识 2.注释:备注 3.启动:是指计数器开始的值 4.递增:每次增加的 ...
- powerdeginer 默认name 为 common
在使用PowerDesigner对数据库进行概念模型和物理模型设计时,一般在NAME或Comment中写中文,在Code中写英文.Name用来显 示,Code在代码中使用,但Comment中的文字会保 ...
- fastdfs5.10 centos6.9 安装配置
下载相关软件 https://codeload.github.com/happyfish100/fastdfs/tar.gz/V5.10http://download.csdn.net/detail/ ...
- DotNetOpenAuth实践系列
写在前面 本人在研究DotNetOpenAuth的过程中,遇到很多问题,很多坑,花费了很多时间才调通这玩意,现在毫无保留的分享出来,希望博友们可以轻松的上手DotNetOpenAuth,减少爬坑时间. ...
- Ubuntu下Node.js开发起步之旅
因为忙其它的事,把Node.js的学习放下了快两个月了,世事变化还真快,发现很多东东都改变了,express已经升级到4.x了,变化还不小! 我原来的学习过程是在VirtualBox中安装Ubuntu ...
- ubuntu访问win10下的磁盘
在ubuntu下访问win10的磁盘时,提示出错. 先用命令查看一下磁盘挂载情况. sudo fdisk -l 会看到一些信息 我要访问的是E盘,也就是 /dev/sda6 这个分区 使用命令ntfx ...