【UOJ 34】 多项式乘法 (FFT)
【题意】 给你两个多项式,请输出乘起来后的多项式。
先打一个递归版本的模板。。。
#include<cstdio>
#include<iostream>
#include<cmath>
#include<memory.h>
#define N 400010
using namespace std;
const double pi=acos(-1); struct P
{
double x,y;
P() {x=y=0;}
P(double x,double y):x(x),y(y){}
}a[N],b[N]; P operator + (P x,P y) {return P(x.x+y.x,x.y+y.y);}
P operator - (P x,P y) {return P(x.x-y.x,x.y-y.y);}
P operator * (P x,P y) {return P(x.x*y.x-x.y*y.y,x.x*y.y+x.y*y.x);} void fft(P *s,int n,int t)
{
if(n==1) return;
P a0[n>>1],a1[n>>1];
for(int i=0;i<=n;i+=2) a0[i>>1]=s[i],a1[i>>1]=s[i+1];
fft(a0,n>>1,t);fft(a1,n>>1,t);
P wn(cos(2*pi/n),t*sin(2*pi/n)),w(1,0);
for(int i=0;i<(n>>1);i++,w=w*wn) s[i]=a0[i]+w*a1[i],s[i+(n>>1)]=a0[i]-w*a1[i];
//w^2=(w+(n>>1))^2 均匀分布在圆上面?
//w[i^2,n]=w[i/2,n/2] 折半引理
//s[i]=a0’(i^2)+i*a1’(i^2)=a0(i)+i*a1(i)
//s[i+n>>1]=a0’((i+n>>1)^2)+i*a1’((i+n>>1)^2)=a0’(i^2)-i*a1’(i^2)
//因为i=-(i+n>>1) 折半引理
} int main()
{
int n,m,nn;
scanf("%d%d",&n,&m);
memset(a,0,sizeof(a));memset(b,0,sizeof(b));
for(int i=0;i<=n;i++) scanf("%lf",&a[i].x);
for(int i=0;i<=m;i++) scanf("%lf",&b[i].x);
nn=1;while (nn<=n+m) nn<<=1;
fft(a,nn,1);fft(b,nn,1);
for(int i=0;i<=nn;i++) a[i]=a[i]*b[i];
fft(a,nn,-1);
for(int i=0;i<=n+m;i++) printf("%d ",(int)(a[i].x/nn+0.5));
return 0;
}
2017-03-04 08:51:27
【UOJ 34】 多项式乘法 (FFT)的更多相关文章
- UOJ 34 多项式乘法 FFT 模板
这是一道模板题. 给你两个多项式,请输出乘起来后的多项式. 输入格式 第一行两个整数 nn 和 mm,分别表示两个多项式的次数. 第二行 n+1n+1 个整数,表示第一个多项式的 00 到 nn 次项 ...
- [UOJ#34]多项式乘法
[UOJ#34]多项式乘法 试题描述 这是一道模板题. 给你两个多项式,请输出乘起来后的多项式. 输入 第一行两个整数 n 和 m,分别表示两个多项式的次数. 第二行 n+1 个整数,分别表示第一个多 ...
- ●UOJ 34 多项式乘法
题链: http://uoj.ac/problem/34 题解: FFT入门题. (终于接触到迷一样的FFT了) 初学者在对复数和单位根有简单了解的基础上,可以直接看<再探快速傅里叶变换> ...
- 2018.11.14 uoj#34. 多项式乘法(fft)
传送门 NOIpNOIpNOIp爆炸不能阻止我搞oioioi的决心 信息技术课进行一点康复训练. fftfftfft板题. 代码: #include<bits/stdc++.h> usin ...
- UOJ 34: 多项式乘法(FFT模板题)
关于FFT 这个博客的讲解超级棒 http://blog.miskcoo.com/2015/04/polynomial-multiplication-and-fast-fourier-transfor ...
- 【刷题】UOJ #34 多项式乘法
这是一道模板题. 给你两个多项式,请输出乘起来后的多项式. 输入格式 第一行两个整数 \(n\) 和 \(m\) ,分别表示两个多项式的次数. 第二行 \(n+1\) 个整数,表示第一个多项式的 \( ...
- UOJ#34. 多项式乘法(NTT)
这是一道模板题. 给你两个多项式,请输出乘起来后的多项式. 输入格式 第一行两个整数 nn 和 mm,分别表示两个多项式的次数. 第二行 n+1n+1 个整数,表示第一个多项式的 00 到 nn 次项 ...
- UOJ 34 多项式乘法 ——NTT
[题目分析] 快速数论变换的模板题目. 与fft的方法类似,只是把复数域中的具有循环性质的单位复数根换成了模意义下的原根. 然后和fft一样写就好了,没有精度误差,但是跑起来比较慢. 这破题目改了好长 ...
- 2018.11.14 uoj#34. 多项式乘法(ntt)
传送门 今天学习nttnttntt. 其实递归方法和fftfftfft是完全相同的. 只不过fftfftfft的单位根用的是复数中的东西,而nttnttntt用的是数论里面有相同性质的原根. 代码: ...
- [UOJ 0034] 多项式乘法
#34. 多项式乘法 统计 描述 提交 自定义测试 这是一道模板题. 给你两个多项式,请输出乘起来后的多项式. 输入格式 第一行两个整数 nn 和 mm,分别表示两个多项式的次数. 第二行 n+1n+ ...
随机推荐
- MySQL性能优化之道
1.in和not in子查询优化 not in 是不能命中索引的,所以以下子查询性能很低. 如果是确定且有限的集合时,可以使用.如 IN (0,1,2). 用 exists或 notexists代替 ...
- 动态加载js和css的jquery plugin
一个简单的动态加载js和css的jquery代码,用于在生成页面时通过js函数加载一些共通的js和css文件. //how to use the function below: //$.include ...
- 【leetcode 简单】第十二题 报数
报数序列是指一个整数序列,按照其中的整数的顺序进行报数,得到下一个数.其前五项如下: 1. 1 2. 11 3. 21 4. 1211 5. 111221 1 被读作 "one 1&quo ...
- Django初探(模板渲染、模板语音、simple_tag、母版子版、静态配置文件)
一.首先我们用PyCharm来创建一个Django项目 终端命令:django-admin startproject sitename 图形创建: 这样一个Django项目就创建完成了,上面可以看 ...
- android Timer TimerTask用法笔记
Android中经常会遇到执行一些周期性定时执行的任务.初学的时候经常会使用Thread.sleep()方法.在android中,有Timer可以专门干这个事情. 先看看Timer.class中都是些 ...
- 面试中关于Redis的问题看这篇就够了
昨天写了一篇自己搭建redis集群并在自己项目中使用的文章,今天早上看别人写的面经发现redis在面试中还是比较常问的(笔主主Java方向).所以查阅官方文档以及他人造好的轮子,总结了一些redis面 ...
- mysql安装后开启远程
操作系统为centos7 64 1.修改 /etc/my.cnf,在 [mysqld] 小节下添加一行:skip-grant-tables=1 这一行配置让 mysqld 启动时不对密码进行验证 2. ...
- python进阶之关键字和运算符触发魔法方法
前言 python有众多的魔法方法,它们会在满足某种条件下触发执行,掌握好魔法方法的使用,可以加快程序的运行效率,同时减少逻辑调用. 关键字与魔法方法 python的一些魔法方法是关键字触发的,即py ...
- win32的回调函数
[转]http://blog.csdn.net/w419675647/article/details/6599070 众所周知,win32的回调函数WndProc()是操作系统调用的函数,win32用 ...
- 树莓派开发系列教程3--ssh、vnc远程访问
注意:树莓派系列的3篇文章里面的图片因为博客转移过程丢失了,非常抱歉 前言 远程访问有很多种方式可以实现.比如ssh.telnet.ftp.samba.远程桌面等等,各有优缺点.本文主要以ssh和远程 ...