[HNOI2009]有趣的数列 题解(卡特兰数)
[HNOI2009]有趣的数列
Description
我们称一个长度为2n的数列是有趣的,当且仅当该数列满足以下三个条件:
(1)它是从1到2n共2n个整数的一个排列{ai};
(2)所有的奇数项满足a1<a3<...<a2n-1,所有的偶数项满足a2<a4<...<a2n;
(3)任意相邻的两项a2i-1与a2i(1<=i<=n)满足奇数项小于偶数项,即:a2i-1<a2i。
现在的任务是:对于给定的n,请求出有多少个不同的长度为2n的有趣的数列。因为最后的答案可能很大,所以只要求输出答案 mod P的值。
输入格式:输入文件只包含用空格隔开的两个整数n和P。输入数据保证,50%的数据满足n<=1000,100%的数据满足n<=1000000且P<=1000000000。
输出格式:仅含一个整数,表示不同的长度为2n的有趣的数列个数mod P的值。
Solution
1.观察下列几种简单情况:
(1)n=1:(1,2);
(2)n=2:(1,2,3,4),(1,3,2,4);
(3)n=3:(1,2,3,4,5,6),(1,2,3,5,4,6),(1,3,2,4,5,6),(1,3,2,5,4,6),(1,4,2,5,3,6);
可以发现每组中1一定在第一个位置,2n一定在最后一个位置,由数列的性质可以证明;
每组数列都可:增加方案数为n-1;移动上一次2n的位置,增加方案数为1;在此基础上添加2n-1,可以发现2n-1允许插入的范围为n+1,n+2,...,2n-1,由乘法原理知,总方案数为C(2n,n)/n+1;
2.所以本题化简为求解模p剩余系下的卡特兰数,那么通过卡特兰数通项公式化简知c[n]=2n(2n-1).....*(n+2)/n!,易证分子是可以整除分母的,那么统计约分后各个因子个数即可;
3.用线性筛法求出1~2n的mindiv,将分母分子分解质因数;
4.计算各质因数的幂再取模相乘即可;
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
using namespace std;
int up[200000002],mindiv[20000002],prime[20000002];
long long i,j,k,n,m,p,ans=1;
void oler(long long n){ //线性筛出最小因子和素数表
for(i=2;i<=n;++i){
if(!mindiv[i]) prime[++prime[0]]=mindiv[i]=i;
for(j=1;j<=prime[0]&&prime[j]<=mindiv[i]&&(k=prime[j]*i)<=n;j++) mindiv[k]=prime[j];
}
return;
}
void count(){ //统计因子
for(i=2*n;i>=n+2;--i){
k=i;
while(k>1){
up[mindiv[k]]++;
k/=mindiv[k];
}
}
for(i=2;i<=n;++i){
k=i;
while(k>1){
up[mindiv[k]]--;
k/=mindiv[k];
}
}
return;
}
long long qp(long long x,long long y){ //快速幂
long long a=1;
do
{
if(y%2==1)a=a*x%p;
x=x*x%p;
}
while(y/=2);
return a;
}
int main(){
memset(up,0,sizeof(up));
memset(mindiv,0,sizeof(mindiv));
memset(prime,0,sizeof(prime));
scanf("%ld%ld",&n,&p);
oler(n*2);
count();
for(i=2;i<=2*n;++i) ans=(ans*qp(i,up[i]))%p;
printf("%ld\n",ans);
return 0;
}
特别感谢zzh对本题求解的帮助
卡特兰数基础知识部分可以参考我的题解:http://www.cnblogs.com/COLIN-LIGHTNING/p/8450053.html
[HNOI2009]有趣的数列 题解(卡特兰数)的更多相关文章
- BZOJ_1485_[HNOI2009]有趣的数列_卡特兰数
BZOJ_1485_[HNOI2009]有趣的数列_卡特兰数 Description 我们称一个长度为2n的数列是有趣的,当且仅当该数列满足以下三个条件: (1)它是从1到2n共2n个整数的一个排列{ ...
- 【题解】洛谷P3200 [HNOI2009] 有趣的数列(卡特兰数+质因数分解)
洛谷P3200:https://www.luogu.org/problemnew/show/P3200 思路 这题明显是卡特兰数的题型咯 一看精度有点大 如果递推卡特兰数公式要到O(n2) 可以证明得 ...
- [bzoj1485][HNOI2009]有趣的数列_卡特兰数_组合数
有趣的数列 bzoj-1485 HNOI-2009 题目大意:求所有1~2n的排列满足奇数项递增,偶数项递增.相邻奇数项大于偶数项的序列个数%P. 注释:$1\le n\le 10^6$,$1\le ...
- [luogu1485 HNOI2009] 有趣的数列 (组合数学 卡特兰数)
传送门 Solution 卡特兰数 排队问题的简单变化 答案为\(C_{2n}^n \pmod p\) 由于没有逆元,只好用分解质因数,易证可以整除 Code //By Menteur_Hxy #in ...
- 「BZOJ1485」[HNOI2009] 有趣的数列 (卡特兰数列)
「BZOJ1485」[HNOI2009] 有趣的数列 Description 我们称一个长度为2n的数列是有趣的,当且仅当该数列满足以下三个条件: (1)它是从1到2n共2n个整数的一个排列{ai ...
- 洛谷P3200 [HNOI2009]有趣的数列(Catalan数)
P3200 [HNOI2009]有趣的数列 题目描述 我们称一个长度为2n的数列是有趣的,当且仅当该数列满足以下三个条件: (1)它是从1到2n共2n个整数的一个排列{ai}: (2)所有的奇数项满足 ...
- bzoj1485: [HNOI2009]有趣的数列(Catalan数)
一眼卡特兰数...写完才发现不对劲,样例怎么输出$0$...原来模数不一定是质数= =... 第一次见到模数不是质数的求组合数方法$(n,m\leq 10^7)$,记录一下... 先对于$1$~$n$ ...
- [HNOI2009]有趣的数列 卡特兰数
题面:[HNOI2009]有趣的数列 题解: 观察到题目其实就是要求从长为2n的序列中选n个放在集合a,剩下的放在集合b,使得集合a和集合b中可以一一对应的使a中的元素小于b. 2种想法(实质上是一样 ...
- BZOJ 1485: [HNOI2009]有趣的数列( catalan数 )
打个表找一下规律可以发现...就是卡特兰数...卡特兰数可以用组合数计算.对于这道题,ans(n) = C(n, 2n) / (n+1) , 分解质因数去算就可以了... -------------- ...
随机推荐
- 小程序获取access_token
<?php //小程序appid $appid = 'wx79d7c348d19f010c'; //小程序 APPSecret 密钥 $appsecret = 'd624aca86d0350ee ...
- TP中系统跳转方法
系统跳转方法 在ThinkPHP中系统有2个跳转方法,分别是成功跳转和失败跳转: 成功: $this -> success(跳转提示,跳转地址,等待时间); 失败: $this -> er ...
- Spring Cloud Config
1.config服务端配置 1.1 引入依赖 <dependency> <groupId>org.springframework.boot</groupId> &l ...
- svn和git的区别及适用场景
svn和git的区别及适用场景 来源 https://blog.csdn.net/wz947324/article/details/80104621 svn的优势: 优异的跨平台支持,对windows ...
- a++ 和 ++a 的区别
a++ 和 ++a 的区别 1)首先说左值和右值的定义: 变量和文字常量都有存储区,并且有相关的类型.区别在于变量是可寻址的(addressable)对于每一个变量都有两个值与其相联: ...
- 转:机器学习 规则化和模型选择(Regularization and model selection)
规则化和模型选择(Regularization and model selection) 转:http://www.cnblogs.com/jerrylead/archive/2011/03/27/1 ...
- hbase 安装笔记
1.安装 在官方镜像站点下载hbase2.0,地址:https://www.apache.org/dyn/closer.lua/hbase/ 解压tar xzvf hbase-2.0.4-bin.ta ...
- Splitter Control for Dialog
原文链接地址:https://www.codeproject.com/Articles/595602/Splitter-Control-for-Dialog Introduction Yes, tha ...
- 【Learning】一步步地解释Link-cut Tree
简介 Link-cut Tree,简称LCT. 干什么的?它是树链剖分的升级版,可以看做是动态的树剖. 树剖专攻静态树问题:LCT专攻动态树问题,因为此时的树剖面对动态树问题已经无能为力了(动态树问题 ...
- 延长xss的攻击(转)
XSS 的本质仍是一段脚本.和其他文档元素一样,页面关了一切都销毁.除非能将脚本蔓延到页面以外的地方,那样才能获得更长的生命力. 庆幸的是,从 DOM 诞生的那一天起,就已为我们准备了这个特殊的功能, ...