最短路径 bellman-ford
- 初始化:将除源点外的所有顶点的最短距离估计值 d[v] ←+∞, d[s] ←0
- 迭代求解:反复对边集E中的每条边进行松弛操作,使得顶点集V中的每个顶点v的最短距离估计值逐步逼近其最短距离;(运行|v|-1次,看下面的描述性证明(当做树))
- 检验负权回路:判断边集E中的每一条边的两个端点是否收敛。如果存在未收敛的顶点,则算法返回false,表明问题无解;否则算法返回true,并且从源点可达的顶点v的最短距离保存在d[v]中
#include<iostream>
#include<cstdio>
using namespace std;
#define MAX 0x3f3f3f3f
#define N 1010
int nodenum, edgenum, original; //点,边,起点
typedef struct Edge //边
{
int u, v;
int cost;
}Edge;
Edge edge[N];
int dis[N], pre[N];
bool Bellman_Ford()
{
for(int i = 1; i <= nodenum; ++i) //初始化
dis[i] = (i == original ? 0 : MAX);
for(int i = 1; i <= nodenum - 1; ++i)
for(int j = 1; j <= edgenum; ++j)
if(dis[edge[j].v] > dis[edge[j].u] + edge[j].cost) //松弛(顺序一定不能反~)
{
dis[edge[j].v] = dis[edge[j].u] + edge[j].cost;
pre[edge[j].v] = edge[j].u;
}
bool flag = 1; //判断是否含有负权回路
for(int i = 1; i <= edgenum; ++i)
if(dis[edge[i].v] > dis[edge[i].u] + edge[i].cost)
{
flag = 0;
break;
}
return flag;
}
void print_path(int root) //打印最短路的路径(反向)
{
while(root != pre[root]) //前驱
{
printf("%d-->", root);
root = pre[root];
}
if(root == pre[root])
printf("%d\n", root);
}
int main()
{
scanf("%d%d%d", &nodenum, &edgenum, &original);
pre[original] = original;
for(int i = 1; i <= edgenum; ++i)
{
scanf("%d%d%d", &edge[i].u, &edge[i].v, &edge[i].cost);
}
if(Bellman_Ford())
for(int i = 1; i <= nodenum; ++i) //每个点最短路
{
printf("%d\n", dis[i]);
printf("Path:");
print_path(i);
}
else
printf("have negative circle\n");
return 0;
}
最短路径 bellman-ford的更多相关文章
- ACM/ICPC 之 最短路径-Bellman Ford范例(POJ1556-POJ2240)
两道Bellman Ford解最短路的范例,Bellman Ford只是一种最短路的方法,两道都可以用dijkstra, SPFA做. Bellman Ford解法是将每条边遍历一次,遍历一次所有边可 ...
- Bellman - Ford 算法解决最短路径问题
Bellman - Ford 算法: 一:基本算法 对于单源最短路径问题,上一篇文章中介绍了 Dijkstra 算法,但是由于 Dijkstra 算法局限于解决非负权的最短路径问题,对于带负权的图就力 ...
- Bellman—Ford算法思想
---恢复内容开始--- Bellman—Ford算法能在更普遍的情况下(存在负权边)解决单源点最短路径问题.对于给定的带权(有向或无向)图G=(V,E),其源点为s,加权函数w是边集E的映射.对图G ...
- poj1860 bellman—ford队列优化 Currency Exchange
Currency Exchange Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 22123 Accepted: 799 ...
- uva 558 - Wormholes(Bellman Ford判断负环)
题目链接:558 - Wormholes 题目大意:给出n和m,表示有n个点,然后给出m条边,然后判断给出的有向图中是否存在负环. 解题思路:利用Bellman Ford算法,若进行第n次松弛时,还能 ...
- 图论算法——最短路径Dijkstra,Floyd,Bellman Ford
算法名称 适用范围 算法过程 Dijkstra 无负权 从s开始,选择尚未完成的点中,distance最小的点,对其所有边进行松弛:直到所有结点都已完成 Bellman-Ford 可用有负权 依次对所 ...
- Dijkstra算法与Bellman - Ford算法示例(源自网上大牛的博客)【图论】
题意:题目大意:有N个点,给出从a点到b点的距离,当然a和b是互相可以抵达的,问从1到n的最短距离 poj2387 Description Bessie is out in the field and ...
- POJ 2240 Arbitrage (Bellman Ford判正环)
Arbitrage Time Limit: 1000MS Memory Limit: 65536K Total Submissions:27167 Accepted: 11440 Descri ...
- PKU 3169 Layout(差分约束系统+Bellman Ford)
题目大意:原题链接 当排队等候喂食时,奶牛喜欢和它们的朋友站得靠近些.FJ有N(2<=N<=1000)头奶牛,编号从1到N,沿一条直线站着等候喂食.奶牛排在队伍中的顺序和它们的编号是相同的 ...
- poj1860 兑换货币(bellman ford判断正环)
传送门:点击打开链接 题目大意:一个城市有n种货币,m个货币交换点,你有v的钱,每个交换点只能交换两种货币,(A换B或者B换A),每一次交换都有独特的汇率和手续费,问你存不存在一种换法使原来的钱更多. ...
随机推荐
- Apache Samza - Reliable Stream Processing atop Apache Kafka and Hadoop YARN
http://engineering.linkedin.com/data-streams/apache-samza-linkedins-real-time-stream-processing-fram ...
- F5刷新与在地址栏按回车的区别
“F5刷新”,它是在你现有页面的基础上,检查网页是否有更新的内容.在检查时,会保留之前的一些变量的值: “转到”和在地址栏回车,则相当于你重新输入网页的URL访问,这种情况下,浏览器会尽量使用已经存在 ...
- 前端开发 - JQuery&Bootstrap - 总结
一.JavaScript和Jquery的区别 1.javascript的缺点: 1.书写繁琐,代码量大 2.代码复杂 3.动画效果,很难实现.使用定时器 各种操作和处理 2.定义: 1.Javascr ...
- IOUtils方式上传下载文件
package com.css.hdfs04; import java.io.File; import java.io.FileInputStream; import java.io.FileOutp ...
- Blue Jeans---poj3080(kmp+暴力求子串)
题目链接:http://poj.org/problem?id=3080 题意就是求n个长度为60的串中求最长公共子序列(长度>=3):如果有多个输出字典序最小的: 我们可以暴力求出第一个串的所有 ...
- cookie和session的自我介绍
Cookie是什么? cookie说的直白点就是保存在用户浏览器端的一个键值对,举个例子,你现在登录了京东商城,你把浏览器关闭之后,你再打开京东,你还是可以对你的账户继续操作,已经购买的商品,订单都是 ...
- cpu-》内存-》磁盘
cpu相当于计算机大脑负责计算以及发送执行命令:内存相当于人的记忆是临时存储:磁盘相当于笔记本,负责永久存储数据: 当系统需要调用硬盘当中的数据时,会将硬盘数据读入内存供cpu进行处理.cpu只会读取 ...
- Django-session中间件源码简单分析
Django-session中间件源码简单分析 settings里有关中间件的配置 MIDDLEWARE = [ 'django.middleware.security.SecurityMiddlew ...
- Look for this newest GS Jordan 6 Floral
Named 'Bulls Over Broadway' and 'Gym Red', the most recent variation from the New Jordans 2015 is fo ...
- Extjs添加行双击事件
var grid = new Ext.grid.GridPanel({ store: store, trackMouseOver: false, disableSelection: true, aut ...