CodeForces 907E Party(bfs+状压DP)
Arseny likes to organize parties and invite people to it. However, not only friends come to his parties, but friends of his friends, friends of friends of his friends and so on. That's why some of Arseny's guests can be unknown to him. He decided to fix this issue using the following procedure.
At each step he selects one of his guests A, who pairwise introduces all of his friends to each other. After this action any two friends of Abecome friends. This process is run until all pairs of guests are friends.
Arseny doesn't want to spend much time doing it, so he wants to finish this process using the minimum number of steps. Help Arseny to do it.
The first line contains two integers n and m (1 ≤ n ≤ 22; ) — the number of guests at the party (including Arseny) and the number of pairs of people which are friends.
Each of the next m lines contains two integers u and v (1 ≤ u, v ≤ n; u ≠ v), which means that people with numbers u and v are friends initially. It's guaranteed that each pair of friends is described not more than once and the graph of friendship is connected.
In the first line print the minimum number of steps required to make all pairs of guests friends.
In the second line print the ids of guests, who are selected at each step.
If there are multiple solutions, you can output any of them.
5 6
1 2
1 3
2 3
2 5
3 4
4 5
2
2 3
4 4
1 2
1 3
1 4
3 4
1
1
In the first test case there is no guest who is friend of all other guests, so at least two steps are required to perform the task. After second guest pairwise introduces all his friends, only pairs of guests (4, 1) and (4, 2) are not friends. Guest 3 or 5 can introduce them.
In the second test case guest number 1 is a friend of all guests, so he can pairwise introduce all guests in one step.
题意:给出n个人和他们之间的友谊关系,每次可以让一个人的所有朋友都认识,求最少要选出几个人才能让所有人都互相认识?(有先后顺序)并且输出方案
题解:这道题一开始想到的是zz无脑状压,结果有不能保证一定正解,接着想到了之前某场bfs式的状压,然后就过了,方案什么的写个栈记录一下就行了,dfs什么的也是可以做的,但是不如bfs直接啦~
代码如下:
#include<queue>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std; int f[(<<)+],pre[(<<)+],key[(<<)+];
int a[],ans[],cnt,n,m;
queue<int> q; void bfs()
{
memset(f,,sizeof(f));
memset(key,-,sizeof(key));
memset(pre,-,sizeof(pre));
for(int i=;i<n;i++)
{
f[a[i]]=;
key[a[i]]=i;
q.push(a[i]);
}
int now,tmp;
while(!q.empty())
{
now=q.front();
q.pop();
for(int i=;i<n;i++)
{
if(now&(<<i))
{
tmp=now|a[i];
if(!f[tmp])
{
f[tmp]=f[now]+;
key[tmp]=i;
pre[tmp]=now;
q.push(tmp);
if(tmp==((<<n)-))
{
return ;
}
}
}
}
}
} int main()
{
scanf("%d%d",&n,&m);
int from,to;
for(int i=;i<n;i++)
{
a[i]|=(<<i);
}
for(int i=;i<=m;i++)
{
scanf("%d%d",&from,&to);
from--;to--;
a[from]|=(<<to);
a[to]|=(<<from);
}
if(m==n*(n-)/)
{
puts("");
return ;
}
bfs();
cnt=;
int now=(<<n)-;
while(~now)
{
ans[++cnt]=key[now];
now=pre[now];
}
printf("%d\n",cnt);
while(cnt)
{
printf("%d",ans[cnt--]+);
if(cnt)
printf(" ");
else
printf("\n");
}
}
CodeForces 907E Party(bfs+状压DP)的更多相关文章
- Codeforces 79D - Password(状压 dp+差分转化)
Codeforces 题目传送门 & 洛谷题目传送门 一个远古场的 *2800,在现在看来大概 *2600 左右罢( 不过我写这篇题解的原因大概是因为这题教会了我一个套路罢( 首先注意到每次翻 ...
- codeforces Diagrams & Tableaux1 (状压DP)
http://codeforces.com/gym/100405 D题 题在pdf里 codeforces.com/gym/100405/attachments/download/2331/20132 ...
- hdu 4856 Tunnels (bfs + 状压dp)
题目链接 The input contains mutiple testcases. Please process till EOF.For each testcase, the first line ...
- HDU-4856 Tunnels (BFS+状压DP)
Problem Description Bob is travelling in Xi’an. He finds many secret tunnels beneath the city. In hi ...
- 孤岛营救问题(BFS+状压DP)
孤岛营救问题 https://www.luogu.org/problemnew/show/P4011 用状压DP标记拿到钥匙的数量 #include<iostream> #include& ...
- QDUOJ 来自xjy的签到题(bfs+状压dp)
来自xjy的签到题 Description 爱丽丝冒险来到了红皇后一个n*n大小的花园,每个格子由'.'或'#'表示,'.'表示爱丽丝可以到达这个格子,‘#’表示爱丽丝不能到达这个格子,爱丽丝每1 ...
- HDU-3681-Prison Break(BFS+状压DP+二分)
Problem Description Rompire is a robot kingdom and a lot of robots live there peacefully. But one da ...
- Codeforces 917C - Pollywog(状压 dp+矩阵优化)
UPD 2021.4.9:修了个 typo,为啥写题解老出现 typo 啊( Codeforces 题目传送门 & 洛谷题目传送门 这是一道 *2900 的 D1C,不过还是被我想出来了 u1 ...
- Codeforces 544E Remembering Strings 状压dp
题目链接 题意: 给定n个长度均为m的字符串 以下n行给出字符串 以下n*m的矩阵表示把相应的字母改动成其它字母的花费. 问: 对于一个字符串,若它是easy to remembering 当 它存在 ...
随机推荐
- bash中常用的快捷键
常用快捷键 ctrl+c 强制终止当前命令 ctrl+l 清屏(clear) ctrl+a 光标移动到命令行行首 ctrl+e 光标移动到命令行行尾 ctrl+u 从光标所在位置删除到行首 ctrl+ ...
- Java8函数式接口和Lambda表达式
两者关系: Lambda表达式就是函数式接口(FunctionalInterface)实现的快捷方式,它相当于函数式接口实现的实例,因为在方法中可以使用Object作为参数,所以把Lambda表达式作 ...
- MongoDB + Spark: 完整的大数据解决方案
Spark介绍 按照官方的定义,Spark 是一个通用,快速,适用于大规模数据的处理引擎. 通用性:我们可以使用Spark SQL来执行常规分析, Spark Streaming 来流数据处理, 以及 ...
- 03-22 Ajax验证用户登录
在网页中一般是通过表单提交数据,而表单获取信息,抛弃当前页面重新加载一个新页面. 现在,在webform网页中可以通过JueryAjax提交.处理数据的方式,达到异步刷新页面. 表单提交数据和Juer ...
- 跟着太白老师学python day11 函数名的应用 globals(), locals()
1. 函数名就是内存地址 def func(): ') print(func) >>>> <function func at 0x00000000003DC1E0> ...
- CentOS6上安装Flash Player
Linux CentOS6服务器中的某个需要远程操作的项目需要使用到Adobe Flash Player组件,直接通过YUM方式安装不了,于是通过强大的搜索,还是可以解决到安装方法的,通过重新加载安装 ...
- innobackupex 备份数据搭建 MySQL Slave
简介: 数据量比较大时,使用 innobackupex 备份数据新增 MySQL Slave 节点. 安装 innobackupex 工具,我这里写过一次:http://www.cnblogs.com ...
- Fail2ban 阻止暴力破解
简介: Fail2ban 能够监控系统日志,匹配日志中的错误信息(使用正则表达式),执行相应的屏蔽动作(支持多种,一般为调用 iptables ),是一款很实用.强大的软件. 如:攻击者不断尝试穷举 ...
- Tomcat ( 单机多 Tomcat 并存 )
简介: Tomcat 扩展( 一台服务器运行多个 tomcat ) 一.安装 JDK .Tomcat shell > rpm -ivh jdk-8u25-linux-x64.rpm # 安装 j ...
- Spring、Springboot常用注解:@Qualifier(不定时更新)
1.@Qualifier 出现场景: 老项目中有多个实现类实现同一个接口时,或者一个项目中有多个数据源时,spring容器不知道该注入哪个实现类或者使用哪个数据源,该注解就派上用场. 1)多实现类实现 ...