Description

  小春现在很清闲,面对书桌上的N张牌,他决定给每张染色,目前小春只有3种颜色:红色,蓝色,绿色.他询问Sun有
多少种染色方案,Sun很快就给出了答案.进一步,小春要求染出Sr张红色,Sb张蓝色,Sg张绝色.他又询问有多少种方
案,Sun想了一下,又给出了正确答案. 最后小春发明了M种不同的洗牌法,这里他又问Sun有多少种不同的染色方案.
两种染色方法相同当且仅当其中一种可以通过任意的洗牌法(即可以使用多种洗牌法,而每种方法可以使用多次)洗
成另一种.Sun发现这个问题有点难度,决定交给你,答案可能很大,只要求出答案除以P的余数(P为质数).

Input

  第一行输入 5 个整数:Sr,Sb,Sg,m,p(m<=60,m+1<p<100)。n=Sr+Sb+Sg。
接下来 m 行,每行描述一种洗牌法,每行有 n 个用空格隔开的整数 X1X2...Xn,恰为 1 到 n 的一个排列,
表示使用这种洗牌法,第 i位变为原来的 Xi位的牌。输入数据保证任意多次洗牌都可用这 m种洗牌法中的一种代
替,且对每种洗牌法,都存在一种洗牌法使得能回到原状态。

Output

  不同染法除以P的余数

Sample Input

1 1 1 2 7
2 3 1
3 1 2

Sample Output

2

HINT

  有2种本质上不同的染色法RGB 和RBG,使用洗牌法231 一次可得GBR 和BGR,使用洗牌法312 一次 可得BRG 
和GRB。
  100%数据满足 Max{Sr,Sb,Sg}<=20。

Source

Solution

  $Polya$定理($Burnside$引理)戳这

  其作用就是求出有几种本质不同的染色方案

  由于每种颜色的个数有限制,需要用三维的$0/1$背包求出每一种置换下不动点方案数(注意不洗牌也是一种置换)

  呃,需要用乘法逆元,否则你会死得很难看

 #include <bits/stdc++.h>
using namespace std;
int p, x[][], f[][][], siz[];
bool vis[]; int qpow(int a, int b)
{
int ans = ;
for(; b; b >>= , a = a * a % p)
if(b & ) ans = ans * a % p;
return ans;
} int main()
{
int sr, sg, sb, m, inv, ans = , tot;
cin >> sr >> sb >> sg >> m >> p;
for(int i = ; i <= m; ++i)
for(int j = ; j <= sr + sg + sb; ++j)
cin >> x[i][j];
for(int i = ; i <= sr + sg + sb; ++i)
x[m + ][i] = i;
for(int z = ; z <= m + ; ++z)
{
memset(f, , sizeof(f));
memset(vis, , sizeof(vis));
memset(siz, , sizeof(siz));
f[][][] = , tot = ;
for(int i = ; i <= sr + sg + sb; ++i)
if(!vis[i])
{
++tot;
for(int j = i; !vis[j]; j = x[z][j])
vis[j] = true, ++siz[tot];
}
for(int l = ; l <= tot; ++l)
for(int i = sr; ~i; --i)
for(int j = sg; ~j; --j)
for(int k = sb; ~k; --k)
{
if(i >= siz[l])
f[i][j][k] = (f[i][j][k] + f[i - siz[l]][j][k]) % p;
if(j >= siz[l])
f[i][j][k] = (f[i][j][k] + f[i][j - siz[l]][k]) % p;
if(k >= siz[l])
f[i][j][k] = (f[i][j][k] + f[i][j][k - siz[l]]) % p;
}
ans = (ans + f[sr][sg][sb]) % p;
}
cout << ans * qpow(m + , p - ) % p << endl;
return ;
}

[BZOJ1004] [HNOI2008] Cards (Polya定理)的更多相关文章

  1. BZOJ1004[HNOI2008]Cards——polya定理+背包

    题目描述 小春现在很清闲,面对书桌上的N张牌,他决定给每张染色,目前小春只有3种颜色:红色,蓝色,绿色.他询问Sun有多少种染色方案,Sun很快就给出了答案.进一步,小春要求染出Sr张红色,Sb张蓝色 ...

  2. BZOJ1004 [HNOI2008]Cards(Polya计数)

    枚举每个置换,求在每个置换下着色不变的方法数,先求出每个循环的大小,再动态规划求得使用给定的颜色时对应的方法数. dp[i][j][k]表示处理到当前圈时R,B,G使用量为i,j,k时的方法数,背包思 ...

  3. bzoj1004 [HNOI2008]Cards Burnside定理+背包

    题目传送门 思路:首先是Burnside引理,要先学会这个博客. Burnside引理我们总结一下,就是 每种置换下不动点的数量之和除以置换的总数,得到染色方案的数量.        这道题,显然每种 ...

  4. [BZOJ1004] [HNOI2008]Cards解题报告(Burnside引理)

    Description 小春现在很清闲,面对书桌上的N张牌,他决定给每张染色,目前小春只有3种颜色:红色,蓝色,绿色.他询问Sun有多少种染色方案,Sun很快就给出了答案.进一步,小春要求染出Sr张红 ...

  5. bzoj1004 [HNOI2008]Cards 置换群+背包

    [bzoj1004][HNOI2008]Cards 2014年5月26日5,3502 Description 小春现在很清闲,面对书桌上的N张牌,他决定给每张染色,目前小春只有3种颜色:红色,蓝色,绿 ...

  6. bzoj 1004 1004: [HNOI2008]Cards burnside定理

    1004: [HNOI2008]Cards Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1668  Solved: 978[Submit][Stat ...

  7. bzoj1004: [HNOI2008]Cards(burnside引理+DP)

    题目大意:3种颜色,每种染si个,有m个置换,求所有本质不同的染色方案数. 置换群的burnside引理,还有个Pólya过几天再看看... burnside引理:有m个置换k种颜色,所有本质不同的染 ...

  8. [BZOJ1004][HNOI2008]Cards 群论+置换群+DP

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1004 首先贴几个群论相关定义和引理. 群:G是一个集合,*是定义在这个集合上的一个运算. ...

  9. BZOJ1004 [HNOI2008]Cards 【burnside定理 + 01背包】

    题目链接 BZOJ1004 题解 burnside定理 在\(m\)个置换下本质不同的染色方案数,等于每种置换下不变的方案数的平均数 记\(L\)为本质不同的染色方案数,\(m\)为置换数,\(f(i ...

随机推荐

  1. cnblogs的使用

    cnblogs的使用 选择使用cnblogs而不是csdn,答案是很明显的.csdn每次创建博客之后会有一段时间的审核期,这大大的影响了用户体验.此外,cnblogs的用户群以及使用模式有着很大的诱惑 ...

  2. vagrant系列教程(一):vagrant的安装与初识(转)

    [参考]https://github.com/astaxie/go-best-practice/blob/master/ebook/zh/01.1.md 阅读目录 下载一个合适的box 完成一个box ...

  3. win7局域网共享文件

    调整共享文件所在电脑设置: 1. 关闭防火墙 2. 更改网络设置 ①打开网络和共享中心 ②进入"选择家庭组和共享选项" ③进入"更改高级共享设置" ④调整设置并 ...

  4. FFT模板(多项式乘法)

    FFT模板(多项式乘法) 标签: FFT 扯淡 一晚上都用来捣鼓这个东西了...... 这里贴一位神犇的博客,我认为讲的比较清楚了.(刚好适合我这种复数都没学的) http://blog.csdn.n ...

  5. CENTOS6.6下mysql5.7.11带boost和不带boost的源码安装

    本文来自我的github pages博客http://galengao.github.io/ 即www.gaohuirong.cn Mysql5.7版本更新后有很多变化,比如json等,连安装都有变化 ...

  6. Shiro的原理及Web搭建

    shiro(java安全框架) 以下都是综合之前的人加上自己的一些小总结 Apache Shiro是一个强大且易用的Java安全框架,执行身份验证.授权.密码学和会话管理.使用Shiro的易于理解的A ...

  7. 变态的IE

    1.IE7及更早版本, unshift()方法总是返回undefined而不是数组的新长度.2.IE8及之前版本, 在catch语句中捕获的错误对象会被添加到执行环境的变量对象, 而不是catch语句 ...

  8. mongodb Decimal Spring data mongodb Decimal128 SpringMvc 序列化字符串 json converter

    Mongodb 3.4 就开始支持Decimal 类型,解决double的精度问题,但是不太好用,MapReduce的时候Array.sum 也不能计算 Decimal.比较坑,但是聚合可以用 Spr ...

  9. Oracle安装、Navicat for Oracle、JDBCl连接、获取表结构

    Oracle安装 Navicat for Oracle配置 Oracle JDBC连接(增删改查) Oracle安装 环境windows 7 64位 安装版本:oracle 11g(64位) 下载地址 ...

  10. 1.2 PCI总线的信号定义

    PCI总线是一条共享总线,在一条PCI总线上可以挂接多个PCI设备.这些PCI设备通过一系列信号与PCI总线相连,这些信号由地址/数据信号.控制信号.仲裁信号.中断信号等多种信号组成. PCI总线是一 ...