1. t分布形状类似于标准正态分布
2.  t分布是对称分布,较正态分布离散度强,密度曲线较标准正态分布密度曲线更扁平
3.  对于大型样本,t-值与z-值之间的差别很小

作用
- t分布纠正了未知的真实标准差的不确定性
- t分布明确解释了估计总体方差时样本容量的影响,是适合任何样本容量都可以使用的合适分布

应用
- 根据小样本来估计呈正态分布且方差未知的总体的均值
- 对于任何一种样本容量,真正的平均值抽样分布是t分布,因此,当存在疑问时,应使用t分布

样本容量对分布的影响
- 当样本容量在 30-35之间时,t分布与标准正态分布难以区分
- 当样本容量达到120时,t分布与标准正态分布实际上完全相同了

自由度df对分布的影响
- 样本方差使用一个估计的参数(平均值),所以计算置信区间时使用的t分布的自由度为 n - 1
- 由于引入额外的参数(自由度df),t分布比标准正态分布的方差更大(置信区间更宽)
  - 与标准正态分布曲线相比,自由度df越小,t分布曲线愈平坦,曲线中间愈低,曲线双侧尾部翘得愈高
  - 自由度df愈大,t分布曲线愈接近正态分布曲线,当自由度df= ∞ 时,t分布曲线为标准正态分布曲线

图表显示t分布

代码:

 # 不同自由度的学生t分布与标准正态分布
import numpy as np
from scipy.stats import norm
from scipy.stats import t
import matplotlib.pyplot as plt print('比较t-分布与标准正态分布')
x = np.linspace( -3, 3, 100)
plt.plot(x, t.pdf(x,1), label='df=1')
plt.plot(x, t.pdf(x,2), label='df=20')
plt.plot(x, t.pdf(x,100), label = 'df=100')
plt.plot( x[::5], norm.pdf(x[::5]),'kx', label='normal')
plt.legend()
plt.show()

运行结果:

用Python学分析 - t分布的更多相关文章

  1. 用Python学分析 - 单因素方差分析

    单因素方差分析(One-Way Analysis of Variance) 判断控制变量是否对观测变量产生了显著影响 分析步骤 1. 建立检验假设 - H0:不同因子水平间的均值无差异 - H1:不同 ...

  2. 用Python学分析 - 二项分布

    二项分布(Binomial Distribution)对Bernoulli试验序列的n次序列,结局A出现的次数x的概率分布服从二项分布- 两分类变量并非一定会服从二项分布- 模拟伯努利试验中n次独立的 ...

  3. 用Python学分析 - 正态分布

    正态分布(Normal Distribution) 1.正态分布是一种连续分布,其函数可以在实线上的任何地方取值. 2.正态分布由两个参数描述:分布的平均值μ和方差σ2 . 3.正态分布的取值可以从负 ...

  4. 用Python学分析:集中与分散

    散点图进阶,结合箱体图与直方图对数据形成全面的认识 描述数据集中趋势的分析量: 均值 - 全部数据的算术平均值 众数 - 一组数据中出现次数最多的变量值 中位数 - 一组数据经过顺序排列后处于中间位置 ...

  5. 用Python学分析 - 散点图

    # 运用散点图对数据分布得到直观的认识 import numpy as np import matplotlib.pyplot as plt # 设计 x, y 轴 n = 10000 x = np. ...

  6. 基于binlog来分析mysql的行记录修改情况(python脚本分析)

          最近写完mysql flashback,突然发现还有有这种使用场景:有些情况下,可能会统计在某个时间段内,MySQL修改了多少数据量?发生了多少事务?主要是哪些表格发生变动?变动的数量是怎 ...

  7. Python爬虫——Python 岗位分析报告

    前两篇我们分别爬取了糗事百科和妹子图网站,学习了 Requests, Beautiful Soup 的基本使用.不过前两篇都是从静态 HTML 页面中来筛选出我们需要的信息.这一篇我们来学习下如何来获 ...

  8. 《用 Python 学微积分》笔记 3

    <用 Python 学微积分>原文见参考资料 1. 16.优化 用一个给定边长 4 的正方形来折一个没有盖的纸盒,设纸盒的底部边长为 l,则纸盒的高为 (4-l)/2,那么纸盒的体积为: ...

  9. 《用 Python 学微积分》笔记 2

    <用 Python 学微积分>原文见参考资料 1. 13.大 O 记法 比较两个函数时,我们会想知道,随着输入值 x 的增长或减小,两个函数的输出值增长或减小的速度究竟谁快谁慢.通过绘制函 ...

随机推荐

  1. ImageMagick

    http://blog.csdn.net/lan861698789/article/details/7738383 1.官网 http://www.imagemagick.org/script/ind ...

  2. Android开发之adb无法连接

    2017/11/14 21:20 Unable to run 'adb': null 21:20 'E:\AndroidSDK\platform-tools\adb.exe start-server' ...

  3. lodash中Collection部分所有方法的总结

    总结一下lodash中Collection的所有的方法,方便对比记忆,也便于使用时候查找. 1.    判断是否符合条件:返回bool: a)  every: 判断每一值是不是都符合条件: 通过 pr ...

  4. 从零开始的H5生活

    作为一个新手,要从头学习Html编程语言,需要从最基础的开始.有耐心慢慢来,很容易就看懂了.我所使用的编程软件是Hbuilder. 1.Html文档结构 包括head和body两部分 <!DOC ...

  5. node传统读取文件和promise,async await,

    先上传统文件加载方式代码,传统方式在处理多层嵌套时代码比较混乱 const fs = require('fs') //引入文件系统 function readFile (cb) { fs.readFi ...

  6. 使用float属性的一些小技巧

    aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAPwAAACJCAIAAACHJsJCAAAKUUlEQVR4nO2dTY8cxRnHd73LLsusDd ...

  7. 微信小程序开发框架技术选型

    目前微信小程序开发有三种方式,原生微信小程序,使用mpVue或wepy微信小程序开发框架. 三种开发方式横向对比资料如下:  

  8. js基础--浏览器标签页隐藏或显示状态 visibility详解

    欢迎访问我的个人博客:http://www.xiaolongwu.cn 前言 在工作中我们可能会遇到这样的需求,当浏览器切换到别的标签页或着最小化时,我们需要暂停页面上正在播放的视频或者音乐,这个需求 ...

  9. 加密原理介绍,代码实现DES、AES、RSA、Base64、MD5

    阅读目录 github下载地址 一.DES对称加密 二.AES对称加密 三.RSA非对称加密 四.实际使用 五.关于Padding 关于电脑终端Openssl加密解密命令 关于网络安全的数据加密部分, ...

  10. 计算机网络相关:应用层协议(一):DNS

    DNS 1.概念  DNS是:  1)  一个有分层的DNS服务器实现的分布式数据库  2)一个使得主机能够查询分布式数据库的应用协议.  它运行在UDP之上,默认使用53号端口.  主要功能 是将主 ...