1. t分布形状类似于标准正态分布
2.  t分布是对称分布,较正态分布离散度强,密度曲线较标准正态分布密度曲线更扁平
3.  对于大型样本,t-值与z-值之间的差别很小

作用
- t分布纠正了未知的真实标准差的不确定性
- t分布明确解释了估计总体方差时样本容量的影响,是适合任何样本容量都可以使用的合适分布

应用
- 根据小样本来估计呈正态分布且方差未知的总体的均值
- 对于任何一种样本容量,真正的平均值抽样分布是t分布,因此,当存在疑问时,应使用t分布

样本容量对分布的影响
- 当样本容量在 30-35之间时,t分布与标准正态分布难以区分
- 当样本容量达到120时,t分布与标准正态分布实际上完全相同了

自由度df对分布的影响
- 样本方差使用一个估计的参数(平均值),所以计算置信区间时使用的t分布的自由度为 n - 1
- 由于引入额外的参数(自由度df),t分布比标准正态分布的方差更大(置信区间更宽)
  - 与标准正态分布曲线相比,自由度df越小,t分布曲线愈平坦,曲线中间愈低,曲线双侧尾部翘得愈高
  - 自由度df愈大,t分布曲线愈接近正态分布曲线,当自由度df= ∞ 时,t分布曲线为标准正态分布曲线

图表显示t分布

代码:

 # 不同自由度的学生t分布与标准正态分布
import numpy as np
from scipy.stats import norm
from scipy.stats import t
import matplotlib.pyplot as plt print('比较t-分布与标准正态分布')
x = np.linspace( -3, 3, 100)
plt.plot(x, t.pdf(x,1), label='df=1')
plt.plot(x, t.pdf(x,2), label='df=20')
plt.plot(x, t.pdf(x,100), label = 'df=100')
plt.plot( x[::5], norm.pdf(x[::5]),'kx', label='normal')
plt.legend()
plt.show()

运行结果:

用Python学分析 - t分布的更多相关文章

  1. 用Python学分析 - 单因素方差分析

    单因素方差分析(One-Way Analysis of Variance) 判断控制变量是否对观测变量产生了显著影响 分析步骤 1. 建立检验假设 - H0:不同因子水平间的均值无差异 - H1:不同 ...

  2. 用Python学分析 - 二项分布

    二项分布(Binomial Distribution)对Bernoulli试验序列的n次序列,结局A出现的次数x的概率分布服从二项分布- 两分类变量并非一定会服从二项分布- 模拟伯努利试验中n次独立的 ...

  3. 用Python学分析 - 正态分布

    正态分布(Normal Distribution) 1.正态分布是一种连续分布,其函数可以在实线上的任何地方取值. 2.正态分布由两个参数描述:分布的平均值μ和方差σ2 . 3.正态分布的取值可以从负 ...

  4. 用Python学分析:集中与分散

    散点图进阶,结合箱体图与直方图对数据形成全面的认识 描述数据集中趋势的分析量: 均值 - 全部数据的算术平均值 众数 - 一组数据中出现次数最多的变量值 中位数 - 一组数据经过顺序排列后处于中间位置 ...

  5. 用Python学分析 - 散点图

    # 运用散点图对数据分布得到直观的认识 import numpy as np import matplotlib.pyplot as plt # 设计 x, y 轴 n = 10000 x = np. ...

  6. 基于binlog来分析mysql的行记录修改情况(python脚本分析)

          最近写完mysql flashback,突然发现还有有这种使用场景:有些情况下,可能会统计在某个时间段内,MySQL修改了多少数据量?发生了多少事务?主要是哪些表格发生变动?变动的数量是怎 ...

  7. Python爬虫——Python 岗位分析报告

    前两篇我们分别爬取了糗事百科和妹子图网站,学习了 Requests, Beautiful Soup 的基本使用.不过前两篇都是从静态 HTML 页面中来筛选出我们需要的信息.这一篇我们来学习下如何来获 ...

  8. 《用 Python 学微积分》笔记 3

    <用 Python 学微积分>原文见参考资料 1. 16.优化 用一个给定边长 4 的正方形来折一个没有盖的纸盒,设纸盒的底部边长为 l,则纸盒的高为 (4-l)/2,那么纸盒的体积为: ...

  9. 《用 Python 学微积分》笔记 2

    <用 Python 学微积分>原文见参考资料 1. 13.大 O 记法 比较两个函数时,我们会想知道,随着输入值 x 的增长或减小,两个函数的输出值增长或减小的速度究竟谁快谁慢.通过绘制函 ...

随机推荐

  1. es6(五):class关键字(extends,super,static)

    ES5中,生成对象通过构造函数: function A(name,age){ this.name=name; this.age=age } // 在A的prototype属性上定义一个test方法,即 ...

  2. vs2015 key

    vs2015 企业版 专业版 密钥   亲测可用 专业版:HMGNV-WCYXV-X7G9W-YCX63-B98R2企业版:HM6NR-QXX7C-DFW2Y-8B82K-WTYJV

  3. arcengine之版本管理

    public void VersionManagement(IVersionedWorkspace versionedWorkspace) { //creating the new version o ...

  4. PAT1043:Is It a Binary Search Tree

    1043. Is It a Binary Search Tree (25) 时间限制 400 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN ...

  5. Myeclipse按包装SVN

    最简单步骤:把features和plugins直接放到Myeclipse安装包的dropins中,从新启动eclipse即可 features和plugins下载地址:http://pan.baidu ...

  6. 数据结构 之 并查集(Disjoint Set)

    一.并查集的概念:     首先,为了引出并查集,先介绍几个概念:     1.等价关系(Equivalent Relation)     自反性.对称性.传递性.     如果a和b存在等价关系,记 ...

  7. 深入Spring Boot:那些注入不了的Spring占位符(${}表达式)

    Spring里的占位符 spring里的占位符通常表现的形式是: <bean id="dataSource" destroy-method="close" ...

  8. Mongo 专题

    什么是MongoDB ? MongoDB 是由C++语言编写的,是一个基于分布式文件存储的开源数据库系统. 在高负载的情况下,添加更多的节点,可以保证服务器性能. MongoDB 旨在为WEB应用提供 ...

  9. C#中的is和as

    is检查一个对象是否兼容于指定的类型,不返回Boolean值.注意is操作符永远不会抛异常.is操作符通常这样使用: if(o is Employee) { Employee e=(Employee) ...

  10. web页面中http返回的状态码解释

    状态码类别:   1xx: 信息类,表示客户发送的请求服务端正在处理   2xx:成功类,服务器 成功接收请求   3xx:重定向类,服务器中找到了多个请求内容,则需要用户再次操作选择   4xx:客 ...