题意

给你一个\(n*m\)方格图,统计上面有多少个格点三角形,除了三个顶点,不覆盖其他的格点(包括边和内部).

答案对于\(998244353\)取模... (\(n,m \le 5 * 10^9\))

题解

这个题十分的巧妙... 集训时是大佬ztzshiwo出的..

据他所说,是不那么杜教筛的杜教筛QAQ

考试时候提示了一个皮克定理...

皮克定理:

\[S=a+\frac{b}{2}-1
\]

\(S\)为格点多边形面积,\(a\)为多边形内部点数,\(b\)为多边形边上点数.

然而我还是只会暴力,正解是真的太神了啊QAQ.

我们考虑一个\(a*b\)的矩形,以它对顶点为端点的三角形,只当\(a \bot b\)时存在四个解.

这个我是听wearry证明的qwq 十分巧妙

简单的证明:

代入皮克定理,可知

当且仅当格点三角形面积为\(S=0+\frac{3}{2}-1=\frac{1}{2}\)时才计入答案

我们可以用叉积的形式表示这个面积. \(S=\frac{1}{2} |AB| |BC| \sin \theta =\frac{1}{2} |\vec {AB} \times \vec{AC}|\).(高中必修内容QAQ)

![image](http://images.cnblogs.com/cnblogs_com/zjp-shadow/1056673/t_sol.png)

我们令之前那个矩形的一条对角线为三角形的一条边,

令左下角为向量出发点,也就是其中一个顶点,然后这条边的向量坐标表达就为\((a,b)\).

我们令另外一条边为\((i,j)\),然后三角形面积就是\(\frac{1}{2}|(a,b) \times (i,j)| = \frac{1}{2}|aj - bi|\).

这个为\(\frac{1}{2}\)所以\(|aj-bi|=1\). \(\therefore aj-bi= \pm 1\)

我们是要求解\((i,j)\) 所以不难发现这是一个扩欧的形式,当且仅当\(a \bot b\)时有整数解.

又\(\because 0 < i < a, 0 < j < b\).. \(\therefore\)可以通过扩欧的相邻解确定在这个区域仅一解.

所以\(\pm 1\)各有一解,换个对角线又有对称的一组解.所以最后总共\(2*2=4\)组解.

所以我们要求的就是原图中每个矩形的贡献就行了...

此处\(n\),\(m\)都是要减一的... (至于为啥...手推就知道了QAQ)

\[\displaystyle \mathrm {ans}=\sum_{i=1}^{n} \sum _{j=1}^{m} 4 \cdot (n-i)(m-j) [i \bot j]
\]

\[\displaystyle =4\sum_{i=1}^{n} \sum_{j=1}^{m} (n-i)(m-j) \sum _ {x|\gcd (i,j)} \mu(x)
\]

\[=\displaystyle 4 \sum_{x=1}^{min(n,m)} \mu(x) \sum_{i=1}^{\lfloor \frac{n}{x} \rfloor} \sum_{j=1}^{\lfloor \frac{m}{x} \rfloor} nm - mix - njx + ijx^2
\]

令$$\displaystyle S(i)=\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$.

\[\displaystyle \mathrm{sum1}=nm \sum_{x=1}^{min(n,m)} \mu(x) \lfloor \frac{nm}{x^2} \rfloor
\]

\[\displaystyle \mathrm{sum2}=m \sum_{x=1}^{min(n,m)} (\mu(x) \cdot x) S(\lfloor \frac{n}{x} \rfloor) \lfloor \frac{m}{x} \rfloor
\]

\[\displaystyle \mathrm{sum3}=n \sum_{x=1}^{min(n,m)} (\mu(x) \cdot x) \lfloor \frac{n}{x} \rfloor S(\lfloor \frac{m}{x} \rfloor)
\]

\[\displaystyle \mathrm{sum4}=\sum_{x=1}^{min(n,m)} (\mu(x) \cdot x^2) S(\lfloor \frac{n}{x} \rfloor) S(\lfloor \frac{m}{x} \rfloor)
\]

\[\mathrm{ans}=\mathrm{sum1}-\mathrm{sum2}-\mathrm{sum3}+\mathrm{sum4}
\]

这个用根号分块就能做到\(\Theta (n+\sqrt {n})\)复杂度啦... 具体推导证明看我的一篇博客线性筛与莫比乌斯反演.

然而这并不能满分...fuck

所以就有杜教筛卡了30分.

\(\displaystyle \sum _{i=1}^{n} \mu(i)\)之前那篇博客杜教筛小结中有介绍.

然后就介绍另外两个套路求的东西吧..

令\(\displaystyle id(x)=x, mx(x)= \mu(i) i\). (然后之后默认把第一个字母大写记作前缀和比如\(\displaystyle Id(x)=\sum_{i=1}^{x} id(i) = \frac{x(x+1)}{2}\))

所以就有

\[mx * id (n)
\]

\[\displaystyle = \sum _{d|n} \mu(d) \cdot d \cdot \frac{n}{d} =\displaystyle \sum _{d|n} \mu(d) \cdot n
\]

\[=\displaystyle n \sum_{d|n} \mu(d) = n \cdot [n=1] = \epsilon
\]

代入之前的套路式子就有

\[\displaystyle 1 - Mx(n) = \sum _{i=2}^{n} i \cdot Mx(\lfloor \frac{n}{i} \rfloor)
\]

然后就可以尝试推出\(\displaystyle \sum _{i=1}^{n} \mu(i) \cdot i \cdot i\).

这个也不麻烦QAQ...

然后本人比较懒 就直接用c++11 中的unordered_map了(这个基于哈希算法)

有些地方有点细节\(5*10^9 * 5*10^9 = 2.5 * 10^{19}\)会爆long long所以很多地方都要记得先取模!!!

代码

#include <bits/stdc++.h>
#define For(i, l, r) for(register ll i = (l), _end_ = (ll)(r); i <= _end_; ++i)
#define Fordown(i, r, l) for(register ll i = (r), _end_ = (ll)(l); i >= _end_; --i)
#define Set(a, v) memset(a, v, sizeof(a))
using namespace std; typedef long long ll;
inline ll read() {
ll x = 0, fh = 1; char ch = getchar();
for (; !isdigit(ch); ch = getchar() ) if (ch == '-') fh = -1;
for (; isdigit(ch); ch = getchar() ) x = (x<<1) + (x<<3) + (ch ^ '0');
return x * fh;
} void File() {
#ifdef zjp_shadow
freopen ("1456.in", "r", stdin);
freopen ("1456.out", "w", stdout);
#endif
} const ll Mod = 998244353; ll n, m; const int N = 1e7 + 1e3;
int prime[N], cnt = 0;
int Limit = N - 1e3; ll mux[N], muxx[N], mu[N];
bitset<N> is_prime; void Init(int maxn) {
int res;
mu[1] = 1;
is_prime.set(); is_prime[0] = is_prime[1] = false;
For (i, 2, maxn) {
if (is_prime[i]) { prime[++cnt] = i; mu[i] = -1; }
For (j, 1, cnt) {
res = prime[j] * i;
if (res > maxn) break;
is_prime[res] = false;
if (i % prime[j]) mu[res] = -mu[i];
else { mu[res] = 0; break ; }
}
}
For (i, 1, maxn) {
mux[i] = mux[i - 1] + 1ll * mu[i] * i % Mod;
mux[i] = (mux[i] % Mod + Mod) % Mod; muxx[i] = muxx[i - 1] + 1ll* mu[i] * i % Mod * i % Mod;
muxx[i] = (muxx[i] % Mod + Mod) % Mod; mu[i] += mu[i - 1];
mu[i] = (mu[i] % Mod + Mod) % Mod;
}
} ll fpm(ll x, ll power) { ll res = 1; x %= Mod; for (; power; power >>= 1, (x *= x) %= Mod) if (power & 1) (res *= x) %= Mod; return res; }
const ll inv2 = fpm(2, Mod - 2), inv6 = fpm(6, Mod - 2);
ll Sum(ll x) { x %= Mod; return (x + 1) * x % Mod * inv2 % Mod; } ll sum1, sum2, sum3, sum4;
ll Nextx; unordered_map<ll, ll> MU, MUX, MUXX;
ll mu_(ll x) {
if (x <= Limit) return mu[x];
if (MU.count(x)) return MU[x];
ll res = 1, Nextx;
For (i, 2, x) { Nextx = x / (x / i); (res += Mod - (Nextx - i + 1) * mu_(x / i) % Mod) %= Mod; i = Nextx; }
return (MU[x] = res);
} inline ll Sum1(ll x) { x %= Mod; return x * (x + 1) % Mod * inv2 % Mod; }
ll mux_(ll x) {
if (x <= Limit) return mux[x];
if (MUX.count(x)) return MUX[x];
ll res = 1, Nextx;
For (i, 2, x) { Nextx = x / (x / i); (res += Mod - (Sum1(Nextx) - Sum1(i - 1) + Mod) * mux_(x / i) % Mod) %= Mod; i = Nextx; }
return (MUX[x] = res);
} inline ll Sum2(ll x) { x %= Mod ; return x * (x + 1) % Mod * (2 * x + 1) % Mod * inv6 % Mod; }
ll muxx_(ll x) {
if (x <= Limit) return muxx[x];
if (MUXX.count(x)) return MUXX[x];
ll res = 1, Nextx;
For (i, 2, x) { Nextx = x / (x / i); (res += Mod - (Sum2(Nextx) - Sum2(i - 1) + Mod) * muxx_(x / i) % Mod) %= Mod; i = Nextx; }
return (MUXX[x] = res);
} int main () {
File();
n = read(); m = read();
if (n > m) swap(n, m);
Init(Limit); For (x, 1, n) {
Nextx = min(n / (n / x), m / (m / x));
(sum1 += (mu_(Nextx) - mu_(x - 1)) * (n / x) % Mod * (m / x) % Mod * n % Mod * m % Mod) %= Mod;
(sum2 += (mux_(Nextx) - mux_(x - 1)) * Sum(n / x) % Mod * (m / x) % Mod) %= Mod;
(sum3 += (mux_(Nextx) - mux_(x - 1)) * Sum(m / x) % Mod * (n / x) % Mod) %= Mod;
(sum4 += (muxx_(Nextx) - muxx_(x - 1)) * Sum(n / x) % Mod * Sum(m / x) % Mod) %= Mod;
x = Nextx;
}
ll ans = sum1 - 1ll * m * sum2 % Mod - 1ll * n * sum3 % Mod + sum4;
ans = (ans % Mod + Mod) % Mod;
ans = ans * 4ll % Mod;
printf ("%lld\n", ans);
return 0;
}

hihocoder #1456 : Rikka with Lattice(杜教筛)的更多相关文章

  1. 51nod 1244 莫比乌斯函数之和(杜教筛)

    [题目链接] http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1244 [题目大意] 计算莫比乌斯函数的区段和 [题解] 利 ...

  2. 51nod 1237 最大公约数之和 V3(杜教筛)

    [题目链接] https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1237 [题目大意] 求[1,n][1,n]最大公约数之和 ...

  3. 杜教筛 && bzoj3944 Sum

    Description Input 一共T+1行 第1行为数据组数T(T<=10) 第2~T+1行每行一个非负整数N,代表一组询问 Output 一共T行,每行两个用空格分隔的数ans1,ans ...

  4. 51NOD 1220 约数之和 [杜教筛]

    1220 约数之和 题意:求\(\sum_{i=1}^n \sum_{j=1}^n \sigma_1(ij)​\) \[ \sigma_0(ij) = \sum_{x\mid i}\sum_{y\mi ...

  5. BZOJ 4176: Lucas的数论 [杜教筛]

    4176: Lucas的数论 题意:求\(\sum_{i=1}^n \sum_{j=1}^n \sigma_0(ij)\) \(n \le 10^9\) 代入\(\sigma_0(nm)=\sum_{ ...

  6. 51NOD 1222 最小公倍数计数 [莫比乌斯反演 杜教筛]

    1222 最小公倍数计数 题意:求有多少数对\((a,b):a<b\)满足\(lcm(a,b) \in [1, n]\) \(n \le 10^{11}\) 卡内存! 枚举\(gcd, \fra ...

  7. 51NOD 1237 最大公约数之和 V3 [杜教筛]

    1237 最大公约数之和 V3 题意:求\(\sum_{i=1}^n\sum_{j=1}^n(i,j)\) 令\(A(n)=\sum_{i=1}^n(n,i) = \sum_{d\mid n}d \c ...

  8. 【BZOJ4805】欧拉函数求和(杜教筛)

    [BZOJ4805]欧拉函数求和(杜教筛) 题面 BZOJ 题解 好久没写过了 正好看见了顺手切一下 令\[S(n)=\sum_{i=1}^n\varphi(i)\] 设存在的某个积性函数\(g(x) ...

  9. 我也不知道什么是"莫比乌斯反演"和"杜教筛"

    我也不知道什么是"莫比乌斯反演"和"杜教筛" Part0 最近一直在搞这些东西 做了将近超过20道题目吧 也算是有感而发 写点东西记录一下自己的感受 如果您真的 ...

随机推荐

  1. 高仿QQ Xplan的H5页面

    概述 这个h5的主要玩法很简单:地球自转的时候会播放背景音乐(比如海浪声),为了找到这个声音是从哪个地球上哪个地方传来的,需要长按下方的按钮,这时地球会自动转动到目标地点,然后镜头拉近,穿过云层,最后 ...

  2. [Python Study Notes]文件操作

    文件操作 对文件操作流程 打开文件,可添加filepath打开某绝对路径下的文件,得到文件句柄并赋值给一个变量 通过句柄对文件进行操作 关闭文件 # The_author = 'liu66' # -* ...

  3. 自定义状态栏的颜色及navigation的title颜色

    1.在info.plist中添加View controller-based status bar appearance,值为NO 2.在设置状态栏的地方添加代码 [[UIApplication sha ...

  4. .addClass(),.removeClass(),.toggleClass()的区别

    .addClass("className")方法是用来给指定元素增加类名,也就是说给指定的元素追加样式: 可以同时添加多个类名,空格符隔开 $("selector&quo ...

  5. 剑指offer第八天

    32.把数组排成最小的数 输入一个正整数数组,把数组里所有数字拼接起来排成一个数,打印能拼接出的所有数字中最小的一个.例如输入数组{3,32,321},则打印出这三个数字能排成的最小数字为321323 ...

  6. linux iptables扩展,脚本防火墙

    netfileter:防火墙内核态ip tables:防火墙用户态(管理防火墙规则) iptables的表和链表包括不同的链,链包括大量的规则4个表: raw,mangle,nat,filter5种链 ...

  7. Cisco Packet Tracer 6.0 实验笔记

    开篇:组建小型局域网 实验任务 1.利用一台型号为2960的交换机将2pc机互连组建一个小型局域网: 2.分别设置pc机的ip地址: 3.验证pc机间可以互通. 实验设备 Switch_2960 1台 ...

  8. flask中jinjia2模板引擎详解4

    接上文 For循环 和其它编程语言一样,for用来编辑列表中的项.下面以一个例子来说明for在flask的jinjia2模板中的使用. 创建一个模板list.html 代码如下{% extends & ...

  9. Pokémon Go呼应设计:让全世界玩家疯狂沉迷

    引言:什么样的呼应设计会让移动游戏玩家沉迷?那必须为玩家构建一个属于玩家本人或者被玩家认可的虚拟环境,或者说是被玩家认可的虚拟世界.在移动游戏时代,想要做到这一点并不容易.但Pokémon Go却做到 ...

  10. R语言︱噪声数据处理、数据分组——分箱法(离散化、等级化)

    每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- 分箱法在实际案例操作过程中较为常见,能够将一些 ...