[HNOI2009]最小圈
题目描述
对于一张有向图,要你求图中最小圈的平均值最小是多少,即若一个圈经过k个节点,那么一个圈的平均值为圈上k条边权的和除以k,现要求其中的最小值
输入输出格式
输入格式:
第一行2个正整数,分别为n和m
以下m行,每行3个数,表示边连接的信息,
输出格式:
一行一个数,表示最小圈的值,保留8位小数。
输入输出样例
4 5
1 2 5
2 3 5
3 1 5
2 4 3
4 1 3
3.66666667
说明
若设边权为v,那么n≤3000,m≤10000,v≤50000
%%%%SAC巨佬
使用二分求解。对于一个猜测的$mid$,只需判断是否存在平均值小于$mid$的回路。
如何判断?
假设存在一个包含$k$条边的回路,回路上各边权值为$w_1$ ,$w_2$ ,$...$,$w_k$ ,那么平均值小于$midv意味着:
$$w_1 +w_2 +...+w_k <k×mid$$
即:
$$(w_1 -mid)+(w_2 -mid)+...+(w_k -mid)<0$$
换句话说,只要把边$(a,b)$的权$w(a,b)$改成$w(a,b)-mid$,再判断新图中是否有负环即可。
存在负环,那么之前的不等式满足,即存在着更小的平均值,$r=mid$;不存在,$l=mid$。
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
struct Node
{
int next,to;
double dis;
}edge[];
const double eps=1e-;
int num,head[],n,m;
double dist[];
bool vis[],flag;
void add(int u,int v,double d)
{
num++;
edge[num].next=head[u];
head[u]=num;
edge[num].to=v;
edge[num].dis=d;
}
void dfs(int x,double zyys)
{int i;
vis[x]=;
for (i=head[x];i;i=edge[i].next)
{
int v=edge[i].to;
if (dist[v]>dist[x]+edge[i].dis-zyys)
{
dist[v]=dist[x]+edge[i].dis-zyys;
if (vis[v])
{
flag=;
return;
}
dfs(v,zyys);
}
}
vis[x]=;
}
int main()
{int i,u,v;
double d;
cin>>n>>m;
for (i=;i<=m;i++)
{
scanf("%d%d%lf",&u,&v,&d);
add(u,v,d);
}
double l=,r=50000.0;
while (r-l>=eps)
{
double mid=(l+r)/2.0;
flag=;
memset(vis,,sizeof(vis));
memset(dist,,sizeof(dist));
for (i=;i<=n;i++)
if (vis[i]==)
dfs(i,mid);
if (flag) r=mid;
else l=mid;
}
printf("%.8lf\n",(l+r)/2.0);
}
[HNOI2009]最小圈的更多相关文章
- bzoj 1486: [HNOI2009]最小圈 dfs求负环
1486: [HNOI2009]最小圈 Time Limit: 10 Sec Memory Limit: 64 MBSubmit: 1022 Solved: 487[Submit][Status] ...
- BZOJ 1486: [HNOI2009]最小圈( 二分答案 + dfs判负圈 )
二分答案m, 然后全部边权减掉m, 假如存在负圈, 那么说明有平均值更小的圈存在. 负圈用dfs判断. ------------------------------------------------ ...
- BZOJ_1486_[HNOI2009]最小圈_01分数规划
BZOJ_1486_[HNOI2009]最小圈_01分数规划 Description Input Output Sample Input 4 5 1 2 5 2 3 5 3 1 5 2 4 3 4 1 ...
- [HNOI2009]最小圈 (二分答案+负环)
题面:[HNOI2009]最小圈 题目描述: 考虑带权的有向图\(G=(V,E)\)以及\(w:E\rightarrow R\),每条边\(e=(i,j)(i\neq j,i\in V,j\in V) ...
- bzoj千题计划227:bzoj1486: [HNOI2009]最小圈
http://www.lydsy.com/JudgeOnline/problem.php?id=1486 二分答案 dfs版spfa判负环 #include<queue> #include ...
- 【BZOJ1486】[HNOI2009]最小圈 分数规划
[BZOJ1486][HNOI2009]最小圈 Description Input Output Sample Input 4 5 1 2 5 2 3 5 3 1 5 2 4 3 4 1 3 Samp ...
- BZOJ1486 HNOI2009 最小圈 【01分数规划】
BZOJ1486 HNOI2009 最小圈 Description 应该算是01分数规划的裸板题了吧..但是第一次写还是遇到了一些困难,vis数组不清零之类的 假设一个答案成立,那么一定可以找到一个环 ...
- 【算法】01分数规划 --- HNOI2009最小圈 & APIO2017商旅 & SDOI2017新生舞会
01分数规划:通常的问法是:在一张有 \(n\) 个点,\(m\) 条边的有向图中,每一条边均有其价值 \(v\) 与其代价 \(w\):求在图中的一个环使得这个环上所有的路径的权值和与代价和的比率最 ...
- 洛谷 P3199 [HNOI2009]最小圈
P3199 [HNOI2009]最小圈 题目背景 如果你能提供题面或者题意简述,请直接在讨论区发帖,感谢你的贡献. 题目描述 对于一张有向图,要你求图中最小圈的平均值最小是多少,即若一个圈经过k个节点 ...
- [HNOI2009]最小圈 分数规划 spfa判负环
[HNOI2009]最小圈 分数规划 spfa判负环 题面 思路难,代码简单. 题目求圈上最小平均值,问题可看为一个0/1规划问题,每个边有\(a[i],b[i]\)两个属性,\(a[i]=w(u,v ...
随机推荐
- JAVA中GridBagLayout布局管理器应用详解
很多情况下,我们已经不需要通过编写代码来实现一个应用程序的图形界面,而是通过强大的IDE工具通过拖拽辅以简单的事件处理代码即可很轻松的完成.但是我们不得不面对这样操作存在的一些问题,有时候我们希望能够 ...
- 浏览器关闭后,Session会话结束了么?
今天想和大家分享一个关于Session的话题: 当浏览器关闭时,Session就被销毁了? 我们知道Session是JSP的九大内置对象(也叫隐含对象)中的一个,它的作用是可以保 存当前用户的状态信息 ...
- 洛谷 U10783 名字被和谐了
https://www.luogu.org/problem/show?pid=U10783 题目背景 众所周知,我们称g是a的约数,当且仅当g是正数且a mod g = 0. 众所周知,若g既是a的约 ...
- vue 手机端开发 小商铺 添加购物车 以及结算 功能
这个功能绕了我一天!!! 对 就是这个功能 一系列相关联的 四处相关联 现在加班 没时间更 过两天在更
- 创建帧动画1 - xml方式
废话不多说,先看东西 创建帧动画1 - xml方式 帧动画的创建方式主要以下2种: * 用xml创建动画: * 用代码创建动画: 本文内容主要关注 xml文件 创建帧动画的方式 xml文件 ...
- 新概念英语(1-119)who call out to the thieves in the dark?
who call out to the thieves in the dark? A true story Do you like stories? I want to tell you a true ...
- OAuth2.0学习(1-10)新浪开放平台微博认证-手机应用授权和refresh_token刷新access_token
1.当你是使用微博官方移动SDK的移动应用时,授权返回access_token的同时,还会多返回一个refresh_token: JSON 1 2 3 4 5 6 { "access ...
- Spring Security 入门(3-11)Spring Security 的使用-自定义登录验证和回调地址
配置文件 security-ns.xml <?xml version="1.0" encoding="UTF-8"?> <beans xmln ...
- Python之线程
操作系统线程理论 线程概念的引入背景 进程 之前我们已经了解了操作系统中进程的概念,程序并不能单独运行,只有将程序装载到内存中,系统为它分配资源才能运行,而这种执行的程序就称之为进程.程序和进程的区别 ...
- python Mysql 库表
Mysql 库表 创建 学生信息库表 学生成绩 库表