转载:https://blog.csdn.net/victoriaw/article/details/78500894

多维缩放(Multidimensional Scaling, MDS)是一组对象之间的距离的可视化表示,也可以当做一种无监督降维算法使用。

为了直观了解MDS,给一个简单例子。假设现在给定一组城市之间的距离信息如下:

现在要求绘制一幅地图,在地图中标出所有城市,并且城市之间的距离等于上表中给出的距离。显然,这种图不是唯一的,因为平移、旋转操作并不改变距离。其中一种绘制方法如下图:

MDS应用在数据降维时,基本思想和上面的例子相同:保证所有数据点对在低维空间中的距离等于在高维空间中的距离

假设给定N个实例,可以计算出原始空间中的距离矩阵D∈RN×ND∈RN×N,其中第ii行第jj列的元素dijdij表示第ii个实例和第jj个实例之间的距离。现在希望把数据降维到d′d′维空间中去,得到所有样本点在d′d′中的表示Z∈RN×d′Z∈RN×d′,其中zTi,:∈Rd′zi,:T∈Rd′表示第ii个实例,并且任意两个实例在d′d′维空间中的距离等于原始空间中的距离。事实上,可以推导出满足此条件ZZ的解析解。

由保持距离原则可知

 
d2ij=||zi−zj||2=||zi||2+||zj||2−2zTizj.(1)(1)dij2=||zi−zj||2=||zi||2+||zj||2−2ziTzj.

不失一般性,我们假设低维空间中的实例点是中心化的,即

 
∑i=1Nzi=0,∑i=1Nzi=0,

那么对公式(1)的左右两边求和,有

 
∑i=1Nd2ij=∑i=1N||zi||2+N||zj||2,(2)(2)∑i=1Ndij2=∑i=1N||zi||2+N||zj||2,
 
∑j=1Nd2ij=N||zi||2+∑j=1N||zj||2,(3)(3)∑j=1Ndij2=N||zi||2+∑j=1N||zj||2,
 
∑i=1N∑j=1Nd2ij=2N∑i=1N||zi||2,(4)(4)∑i=1N∑j=1Ndij2=2N∑i=1N||zi||2,

由(2)(3)(4)可知:

 
1N∑i=1Nd2ij=1N∑i=1N||zi||2+||zj||2,(5)(5)1N∑i=1Ndij2=1N∑i=1N||zi||2+||zj||2,
 
1N∑j=1Nd2ij=||zi||2+1N∑j=1N||zj||2,(6)(6)1N∑j=1Ndij2=||zi||2+1N∑j=1N||zj||2,
 
1N2∑i=1N∑j=1Nd2ij=21N∑i=1N||zi||2,(7)(7)1N2∑i=1N∑j=1Ndij2=21N∑i=1N||zi||2,

定义内积矩阵B=ZZT∈RN×NB=ZZT∈RN×N,即bij=zTizjbij=ziTzj。则

 
bij=−12(1N2∑i=1N∑j=1Nd2ij−1N∑i=1Nd2ij−1N∑j=1Nd2ij+d2ij).(8)(8)bij=−12(1N2∑i=1N∑j=1Ndij2−1N∑i=1Ndij2−1N∑j=1Ndij2+dij2).

对矩阵BB做特征分解,得到

 
B=VΛVT,(9)(9)B=VΛVT,

其中,ΛΛ是由B的特征值生成的对角矩阵,VV是特征向量作为列的矩阵。

我们希望降到d′d′维空间中,那么选择前d′d′个最大特征值及对应的特征向量,得到Λd′Λd′和Vd′Vd′,则降维后的特征表示为

 
Z=Vd′Λ12d′.(10)(10)Z=Vd′Λd′12.

参考

[1] Multidimensional Scaling: Definition, Overview, Examples
[2] 数据降维之多维缩放MDS(Multiple Dimensional Scaling)

---------------------

本文来自 CodeTutor 的CSDN 博客 ,全文地址请点击:https://blog.csdn.net/victoriaw/article/details/78500894?utm_source=copy

MDS的更多相关文章

  1. 为 MDS 修改 SharePoint 2013组件

    了解如何修改 SharePoint 项目中的组件以在 SharePoint 2013 中利用最少下载策略(MDS).   本文内容 为何修改 SharePoint 组件? 母版页 ASP.NET 页面 ...

  2. sharepoint2013的最少下载策略概述(MDS)

    该策略是 SharePoint 2013 中的一种新功能,通过在用户导航到新页面时仅发送差异内容来减少页面加载时间. 最少下载策略 (MDS) 是 SharePoint 2013 中的一种新技术,可减 ...

  3. OAF_MDS系列2_OAF页面的通过MDS多语言开发国际化(案例)

    2014-06-06 Created By BaoXinjian

  4. OAF_MDS系列1_OAF页面元数据结构MDS的解析(概念)

    2014-06-06 Created By BaoXinjian

  5. Machine Learning for hackers读书笔记(九)MDS:可视化地研究参议员相似性

    library('foreign') library('ggplot2') data.dir <- file.path('G:\\dataguru\\ML_for_Hackers\\ML_for ...

  6. 3.21 采购订单导入MDS

    3.21.1   业务方案描述 同一企业集团内部的不同法人之间,双方间内部往来业务频繁.受集团财务各自独立核算的要求,买方和卖方间采用买卖方式进行业务运作和财务结算. 对于买方,按照内部商定的协议价格 ...

  7. 1.9 需求订单导入MDS

    1.9          需求订单导入MDS 1.9.1   业务方案描述 将”需求订单维护表”中完成调整维护的需求订单导入系统标准MDS中,使之驱动对应的物料需求计划(MRP)的运行. 1.9.2  ...

  8. Ceph更多Mon 更多mds

    1.当前状态 watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvdWpfbW9zcXVpdG8=/font/5a6L5L2T/fontsize/400/fill ...

  9. MS MDS系列之初始MS Master Data Service(微软主数据服务)

    背景介绍: 主数据服务(Master Data Services)是微软平台支持的主数据管理(MDM)平台.类似MDS这样的系统,如果后续维护得当,会给企业提供一个强大的中心数据库系统,来防止企业数据 ...

  10. MS MDS系列之MDS层次结构(Hierarchy)

    在Master Data Services中,Hierarchy的作用主要用于: 对同属性成员进行分组 聚合成员用于分析和报告输出 写在开始:显示层次结构(Explicit Hierarchy)即将在 ...

随机推荐

  1. Python:鲜为人知的功能特性(上)

    GitHub 上有一个名为<What the f*ck Python!>的项目,这个有趣的项目意在收集 Python 中那些难以理解和反人类直觉的例子以及鲜为人知的功能特性,并尝试讨论这些 ...

  2. LeetCode 上最难的链表算法题,没有之一!

    题目来源于 LeetCode 第 23 号问题:合并 K 个排序链表. 该题在 LeetCode 官网上有关于链表的问题中标注为最难的一道题目:难度为 Hard ,通过率在链表 Hard 级别目前最低 ...

  3. ___Html页面使用Ajax做数据显示

    <!DOCTYPE html><html xmlns="http://www.w3.org/1999/xhtml"><head> <met ...

  4. [TCP/IP] 网络层-简单查看路由表

    使用抓包工具排除网络故障:1.如果一台计算机在网络上发广播包,广播的mac地址是全ff,就有可能堵塞2.使用抓包工具,检测广播包和多播包 网络畅通的条件:数据包有去有回1.路由器使用路由表找到目标网段 ...

  5. 如何在Linux服务器和windows系统之间上传与下载文件

    Do not let dream just be your dream. 背景:Linux服务器文件上传下载. XShell+Xftp安装包(解压即用)百度网盘链接:https://pan.baidu ...

  6. 备忘录模式 Memento 快照模式 标记Token模式 行为型 设计模式(二十二)

    备忘录模式 Memento   沿着脚印,走过你来时的路,回到原点.     苦海翻起爱恨   在世间难逃避命运   相亲竟不可接近   或我应该相信是缘份   一首<一生所爱>触动了多少 ...

  7. JS 字符串对象 数组对象 函数对象 函数作用域

    一.内置对象 object对象:ECMAScript 中的所有对象都由这个对象继承而来:Object 对象中的所有属性和方法都会出现在其他对象中 ToString() : 返回对象的原始字符串表示.V ...

  8. Java:配置环境(Mac)——JDK

    1.下载JDK 官网 打开后,直接下载最新版本. 选择dmg文件下载 2.开始安装,一直下一步. 3.打开终端,查询安装路径:/usr/libexec/java_home,复制备用. 4.配置Java ...

  9. c#核心基础 - 浅谈 c# 中的特性 Attribute)

    特性(Attribute)是用于在运行时传递程序中各种元素(比如类.方法.结构.枚举.组件等)的行为信息的声明性标签.可以通过使用特性向程序添加声明性信息.一个声明性标签是通过放置在它所应用的元素前面 ...

  10. sql 排序函数ROW_NUMBER分页返回数据

    分页从数据库返回一张表的某些条数据 假设我需要查询 系统表 sys.all_columns中的数据,每次查询10条 第一次查询第1-10条数据 第二次查询第11-20条数据 第三次查询第21-30条数 ...