【BZOJ3996】[TJOI2015]线性代数(最小割)

题面

BZOJ

洛谷

题解

首先把式子拆开,发现我们的答案式就是这个:

\[\sum_{i=1}^n\sum_{j=1}^n B_{i,j}A_iA_j-\sum_{i=1}^n A_iC_i
\]

发现\(A\)是\(01\)矩阵,再结合数据范围一脸一个最大权闭合子图的形式。

然后这里有两种做法,

第一种是无脑版本,对于每个\(B_{i,j}\)都建立一个新点。

第二种就手动解一下方程,点数稍微少点,边数一样。

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<vector>
#include<queue>
using namespace std;
#define ll long long
#define MAX 300000
const int inf=1e9;
inline int read()
{
int x=0;bool t=false;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=true,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return t?-x:x;
}
struct Line{int v,next,w;}e[MAX*10];
int h[MAX],cnt=2;
inline void Add(int u,int v,int w)
{
e[cnt]=(Line){v,h[u],w};h[u]=cnt++;
e[cnt]=(Line){u,h[v],0};h[v]=cnt++;
}
int S,T,level[MAX],cur[MAX];
bool bfs()
{
for(int i=S;i<=T;++i)level[i]=0;
queue<int> Q;Q.push(S);level[S]=1;
while(!Q.empty())
{
int u=Q.front();Q.pop();
for(int i=h[u];i;i=e[i].next)
if(e[i].w&&!level[e[i].v])
level[e[i].v]=level[u]+1,Q.push(e[i].v);
}
return level[T];
}
int dfs(int u,int flow)
{
if(u==T||!flow)return flow;
int ret=0;
for(int &i=cur[u];i;i=e[i].next)
{
int v=e[i].v;
if(level[v]==level[u]+1)
{
int d=dfs(v,min(flow,e[i].w));
ret+=d;flow-=d;
e[i].w-=d;e[i^1].w+=d;
}
}
if(!ret)level[u]=0;
return ret;
}
int Dinic()
{
int ret=0;
while(bfs())
{
for(int i=S;i<=T;++i)cur[i]=h[i];
ret+=dfs(S,inf);
}
return ret;
}
int n,C[505],B[505][505],ans,tot;
int main()
{
n=read();
for(int i=1;i<=n;++i)
for(int j=1;j<=n;++j)ans+=(B[i][j]=read());
for(int i=1;i<=n;++i)C[i]=read();
S=0;T=n+n*n+1;tot=n;
for(int i=1;i<=n;++i)Add(S,i,C[i]);
for(int i=1;i<=n;++i)
for(int j=1;j<=n;++j)
{
++tot;
Add(i,tot,inf);Add(j,tot,inf);
Add(tot,T,B[i][j]);
}
printf("%d\n",ans-Dinic());
return 0;
}

【BZOJ3996】[TJOI2015]线性代数(最小割)的更多相关文章

  1. BZOJ3996[TJOI2015]线性代数——最小割

    题目描述 给出一个N*N的矩阵B和一个1*N的矩阵C.求出一个1*N的01矩阵A.使得 D=(A*B-C)*A^T最大.其中A^T为A的转置.输出D 输入 第一行输入一个整数N,接下来N行输入B矩阵, ...

  2. 【BZOJ-3996】线性代数 最小割-最大流

    3996: [TJOI2015]线性代数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1054  Solved: 684[Submit][Statu ...

  3. bzoj 3996: [TJOI2015]线性代数 [最小割]

    3996: [TJOI2015]线性代数 题意:给出一个NN的矩阵B和一个1N的矩阵C.求出一个1*N的01矩阵A.使得 \(D=(A * B-C)* A^T\)最大.其中A^T为A的转置.输出D.每 ...

  4. [TJOI2015]线性代数(最小割)

    题目描述 给出一个N*N的矩阵B和一个1*N的矩阵C.求出一个1*N的01矩阵A.使得 D=(A*B-C)*A^T最大.其中A^T为A的转置.输出D 题解 观察上面那个式子发现,当一个bij有贡献时当 ...

  5. bzoj 3996 [TJOI2015]线性代数——最小割

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3996 b[ i ][ j ] 要计入贡献,当且仅当 a[ i ] = 1 , a[ j ] ...

  6. BZOJ3996 [TJOI2015]线性代数 【最小割】

    题目 给出一个NN的矩阵B和一个1N的矩阵C.求出一个1*N的01矩阵A.使得 D=(AB-C)A^T最大.其中A^T为A的转置.输出D 输入格式 第一行输入一个整数N,接下来N行输入B矩阵,第i行第 ...

  7. BZOJ3996 [TJOI2015]线性代数

    就是求$D = A \times B \times A^T - C \times A^T$ 展开也就是$$D = \sum_{i, j} A_i * A_j * B_{i, j} - \sum_{i} ...

  8. BZOJ3996 TJOI2015线性代数

    先把矩阵式子化简 原式=∑i=1n∑j=1nA[i]∗B[i][j]∗A[j]−∑i=1nA[i]∗C[i] 因此我们发现问题转化为选取一个点所获收益是B[i][j],代价是C[i][j] 这是一个最 ...

  9. BZOJ 3996 线性代数 最小割

    题意: 给出一个N*N的矩阵B和一个1*N的矩阵C.求出一个1*N的01矩阵A.使得 D=(A*B-C)*A^T最大.其中A^T为A的转置.输出D 分析: 这道题比较绕,我们需要看清题目中那个式子的本 ...

  10. BZOJ3996:[TJOI2015]线性代数(最大权闭合子图)

    Description 给出一个N*N的矩阵B和一个1*N的矩阵C.求出一个1*N的01矩阵A.使得 D=(A*B-C)*A^T最大.其中A^T为A的转置.输出D Input 第一行输入一个整数N,接 ...

随机推荐

  1. Jquer + Ajax 制作上传图片文件

    没什么 说的  直接 上代码 //选择图片并上传 function selectImg(node){ var f = node.value; var file = node.files[0]; if( ...

  2. Java集合类源码解析:Vector

    [学习笔记]转载 Java集合类源码解析:Vector   引言 之前的文章我们学习了一个集合类 ArrayList,今天讲它的一个兄弟 Vector.为什么说是它兄弟呢?因为从容器的构造来说,Vec ...

  3. 使用tensorflow搭建自己的验证码识别系统

    目录 准备验证码数据 保存为tfrecords文件 验证码训练 学习tensorflow有一段时间了,想做点东西来练一下手.为了更有意思点,下面将搭建一个简单的验证码识别系统. 准备验证码数据 下面将 ...

  4. 20190423-Vscode与Sass不得不说的秘密(>^ω^<)

    这是乱七八糟的前言:emmm,今天倔强的点,是关于Vscode使用easySass插件时,不安装ruby环境,直接使用插件编译时,不进行设置,分音是会转译为Css文件的= =,神坑的后知后觉才发现是因 ...

  5. jQuery从小白开始---初始jQuery

    jQuery是什么? jQuery是一款优秀的JavaScript库,从命名可以看出jQuery最主要的用途就是用来做查询(jQuery=js+Query),正如jQuery官方Logo副标题所说(w ...

  6. UI第三方

    自定义下拉刷新控件 - RefreshableView(支持所有控件的下拉刷新)https://blog.csdn.net/cjh_android/article/details/52462367 亲 ...

  7. RecycleView的notifyItemRemoved使用注意

    转载请标明出处,维权必究:https://www.cnblogs.com/tangZH/p/10116095.html 我们为了移除RecycleView的某一项,会用RecycleView的noti ...

  8. 【English】十一、一般疑问句

    一.一般疑问句定义 参考:英语语法中的一般疑问句和特殊疑问句的区别   英语一般疑问句句型结构 能用yes / no(或相当于yes / no)回答的问句. 二.一般疑问句的句子结构,三种 be动词: ...

  9. jquery中Json操作

    在开发中,我们有可能拿到的不是全的json,而是一部分json格式的数据,这个时候我们需要将其强转为json对象 第一种方法:使用jquery中的$.parseJSON(),但是它对json数据格式的 ...

  10. Linux新手随手笔记1.2

    重定向 输入重定向:将命令输出结果写入一个文件或将一个文件内容导回到命令里面的这个过程叫做重定向 :标准(>) 输出重定向   :覆盖写入清空写入(>)/追加写入(>>) :错 ...