题目链接:https://vjudge.net/problem/POJ-3436

Sample input 1
3 4
15 0 0 0 0 1 0
10 0 0 0 0 1 1
30 0 1 2 1 1 1
3 0 2 1 1 1 1

题目:P  —— 一台电脑由p个零件组成

   N —— 工厂有n台加工组装电脑的机器

  Q —— i-th机器每单位时间能工作的数量
 
当每个未成品需要放入某个机器进一步加工的时候,它需要满足这台机器能正常工作的前提,
即它必须满足某些零件已经组装好了。
样例1: 前p个数字表示,进入i-th台机器,必须满足这些条件(0表示这个零件不能被安装 1表示这个零件必须被安装 2表示这个零件有无被安装无影响)
后p个数字表示,某个未成品被i-th台机器加工完成后,满足了这些条件(0表示这个零件没被安装 1表示这个零件被安装了)
问:怎么安排机器工作方案,能使得工作效率最大化,安排情况有很多,输出一种即可。 思路:比较清楚,一个超级源点,一个超级汇点,一台机器需要拆成入点和出点,一台机器的入点和出点流量为该机器单位时间的工作量,其他点与点之间的流量就是INF了。
重点就是哪些边能建立起来比较麻烦,图建好了,跑一个Dinic就OK了。
 #include <iostream>
#include <cstdio>
#include <algorithm>
#include <queue>
#include <vector>
using namespace std; const int N = ,INF = (int)1e9;
int p,n,tot;
int G[N][N],head[N],lev[N];
queue<int > que;
struct info{
int in[],out[];
int cap;
}info[N];//存机器的信息
struct node{
int to,nxt,flow;
}e[N*N]; void init_main(){
for(int i = ; i <= n; ++i)
for(int j = ; j <= n; ++j) G[i][j] = ; for(int i = ; i <= *n+; ++i) head[i] = -; tot = ;
} void init_bfs(){
for(int i = ; i <= *n+; ++i) lev[i] = ;
while(!que.empty()) que.pop();
} inline void add(int u,int v,int flow){
e[tot].to = v;
e[tot].flow = flow;
e[tot].nxt = head[u];
head[u] = tot++;
} //是否可连边
inline bool check(int x,int y){
for(int i = ; i <= p; ++i){
if(info[y].in[i] == ) continue;
if(info[x].out[i] != info[y].in[i]) return false;
}
return true;
} //建边
void rebuild(){
for(int i = ; i <= n; ++i){
if(check(,i)){
add(,i,INF); add(i,,);
}
if(check(i,*n+)){
add(i+n,*n+,INF); add(*n+,i+n,);
}
}
for(int i = ; i <= n; ++i){
for(int j = ; j <= n; ++j){
if(i == j){
add(i,i+n,info[i].cap); add(i+n,i,);
}
else if(check(i,j)){
add(i+n,j,INF); add(j,i+n,);
}
}
}
} int dfs(int now,int flow,int t){
if(now == t) return flow;
int to,sum = ,tmp = ;
for(int o = head[now]; ~o; o = e[o].nxt){
to = e[o].to;
if((lev[to] == lev[now] +) && e[o].flow && (tmp = dfs(to,min(flow - sum, e[o].flow),t))){
//需要的路径流量 G数组来存机器之间的联系
if(now > n && now < *n+ && to != *n+){
G[now-n][to] += tmp;
}
e[o].flow -= tmp;
e[o^].flow += tmp;
if((sum += tmp) == flow) return sum;
}
}
return sum;
} bool bfs(int s,int t){
init_bfs();
que.push();
while(!que.empty()){
int now = que.front(); que.pop();
for(int o = head[now]; ~o; o = e[o].nxt){
int to = e[o].to;
if(!lev[to] && e[o].flow){
lev[to] = lev[now] + ;
que.push(to);
}
}
}
if(lev[t]) return true;
else return false;
} int mf(int s,int t){
int max_flow = ;
while(bfs(s,t)){
max_flow += dfs(s,INF,t);
//cout << "max_flow " << max_flow << endl;
}
return max_flow;
} int main(){ while(~scanf("%d%d",&p,&n)){
init_main();
//读入信息 0超级源点 2*n+1超级汇点
for(int i = ; i <= n; ++i){
scanf("%d",&info[i].cap);
for(int j = ; j <= p; ++j) scanf("%d",&info[i].in[j]);
for(int j = ; j <= p; ++j) scanf("%d",&info[i].out[j]);
}
info[].cap = INF; info[*n+].cap = INF;
for(int i = ; i <= p; ++i){
info[].out[i] = ;
info[*n+].in[i] = ;
}
//建图
rebuild();
//Dinic
int _mf = mf(,*n+),line = ;
//统计需要的联系数量
for(int i = ; i <= n; ++i){
for(int j = ; j <= n; ++j){
if(G[i][j]) ++line;
}
}
printf("%d %d\n",_mf,line);
//输出联系
for(int i = ; i <= n; ++i){
for(int j = ; j <= n; ++j){
if(G[i][j]) printf("%d %d %d\n",i,j,G[i][j]);
}
}
} return ;
}
 

kuangbin专题专题十一 网络流 POJ 3436 ACM Computer Factory的更多相关文章

  1. POJ 3436 ACM Computer Factory (网络流,最大流)

    POJ 3436 ACM Computer Factory (网络流,最大流) Description As you know, all the computers used for ACM cont ...

  2. Poj 3436 ACM Computer Factory (最大流)

    题目链接: Poj 3436 ACM Computer Factory 题目描述: n个工厂,每个工厂能把电脑s态转化为d态,每个电脑有p个部件,问整个工厂系统在每个小时内最多能加工多少台电脑? 解题 ...

  3. POJ - 3436 ACM Computer Factory 网络流

    POJ-3436:http://poj.org/problem?id=3436 题意 组配计算机,每个机器的能力为x,只能处理一定条件的计算机,能输出特定的计算机配置.进去的要求有1,进来的计算机这个 ...

  4. POJ 3436 ACM Computer Factory 最大流,拆点 难度:1

    题目 http://poj.org/problem?id=3436 题意 有一条生产线,生产的产品共有p个(p<=10)零件,生产线上共有n台(n<=50)机器,每台机器可以每小时加工Qi ...

  5. POJ - 3436 ACM Computer Factory(最大流)

    https://vjudge.net/problem/POJ-3436 题目描述:  正如你所知道的,ACM 竞赛中所有竞赛队伍使用的计算机必须是相同的,以保证参赛者在公平的环境下竞争.这就是所有这些 ...

  6. POJ 3436 ACM Computer Factory(最大流+路径输出)

    http://poj.org/problem?id=3436 题意: 每台计算机包含P个部件,当所有这些部件都准备齐全后,计算机就组装完成了.计算机的生产过程通过N台不同的机器来完成,每台机器用它的性 ...

  7. POJ 3436 ACM Computer Factory (拆点+输出解)

    [题意]每台计算机由P个零件组成,工厂里有n台机器,每台机器针对P个零件有不同的输入输出规格,现在给出每台机器每小时的产量,问如何建立流水线(连接各机器)使得每小时生产的计算机最多. 网络流的建图真的 ...

  8. POJ 3436 ACM Computer Factory

    题意:   为了追求ACM比赛的公平性,所有用作ACM比赛的电脑性能是一样的,而ACM董事会专门有一条生产线来生产这样的电脑,随着比赛规模的越来越大,生产线的生产能力不能满足需要,所以说ACM董事会想 ...

  9. poj 3436 ACM Computer Factory 最大流+记录路径

    题目 题意: 每一个机器有一个物品最大工作数量,还有一个对什么物品进行加工,加工后的物品是什么样.给你无限多个初始都是000....的机器,你需要找出来经过这些机器操作后最多有多少成功的机器(111. ...

随机推荐

  1. C# 对 byte 数组进行模式搜索

    本文告诉大家几个方法从 byte 数组找到对应的相同序列的数组 最简单的方法是进行数值判断,但是代码最少是使用Linq ,效率比较高是使用 Boyer-Moore 算法,下面就告诉大家几个算法的代码 ...

  2. C#使用SmtpClient发送邮件解决授权码配置问题

    授权码,(新版邮箱在开启smtp权限设置时,会生成授权码)如果不做配置,客户端是不能发送邮件的 //指定邮箱账号和密码,需要注意的是,这个密码是你在QQ邮箱设置里开启服务的时候给你的那个授权码 Smt ...

  3. CentOS6.5升级NTP

    二.安装依赖包 yum -y install gcc libcap libcap-devel glibc-devel 三.升级Ntp 1.tar zxf /tmp/ntp-4.2.8p10.tar.g ...

  4. vue项目使用websocket做聊天项目总结

    一.首先我们先了解一下websocket的使用: 1.创建websocket const ws = new WebSocket("ws://192.168.31.136:9998/ws&qu ...

  5. 22.文本框验证和外部url的调用

    面板可以右键固定到浏览器并且横向纵向都剧中 如果要在图片上进行点击或者其他操作 可以覆盖一个图片热区或者矩形(透明的)充当一个按钮的操作 这个提示的图片是默认隐藏的 通过右上角那个隐藏的勾 文本框右边 ...

  6. 洛谷$P2805\ [NOI2009]$植物大战僵尸 网络流

    正解:网络流 解题报告: 传送门$QwQ$ 题面好长昂,,,我大概概括下$QwQ$?有个$n\cdot m$的网格,每个格子有一株植物,击溃一株植物$(x,y)$需要付出$S_{(x,y)}$的代价( ...

  7. MementoPattern(备忘录模式)-----Java/.Net

    备忘录模式(Memento Pattern)保存一个对象的某个状态,以便在适当的时候恢复对象.备忘录模式属于行为型模式.

  8. 「P5004」专心OI - 跳房子 解题报告

    题面 把\(N\)个无色格子排成一行,选若干个格子染成黑色,要求每个黑色格子之间至少间隔\(M\)个格子,求方案数 思路: 矩阵加速 根据题面,这一题似乎可以用递推 设第\(i\)个格子的编号为\(i ...

  9. 在.NET Core中批量注入Grpc服务

    GRPC 是谷歌发布的一个开源.高性能.通用RPC服务,尽管大部分 RPC 框架都使用 TCP 协议,但其实 UDP 也可以,而 gRPC 干脆就用了 HTTP2.还有就是它具有跨平台.跨语言 等特性 ...

  10. 31.用python中的serial向串口发送和接收数据(案例一)

    代码功能说明:1.向串口助手发送十六进制数据:0X01,0X03,0X00,0X00,0X00,0X01,0X84,0X0A: 2.用串口助手向代码发送数据,并将发送过来的数据保存在数据库中,按数据和 ...