传送门

解题思路

  首先我们设变化量为\(r\),那么最终的答案就可以写成 :

\[ans=min(\sum\limits_{i=1}^n(a_i-b_i+r)^2)
\]

\[ans=min(\sum\limits_{i=1}^n(a_i-b_i)^2-2*r*\sum\limits_{i=1}^{n}(a_i-b_i)+n*r^2)
\]

继续化简:

\[ans=min(\sum\limits_{i=1}^n a_i^2+\sum\limits_{i=1}^n b_i^2-2*\sum\limits_{i=1}^na_i*b_i-2*r*\sum\limits_{i=1}^{n}(a_i-b_i)+n*r^2)
\]

\[ans=min((\sum\limits_{i=1}^n a_i^2+\sum\limits_{i=1}^n b_i^2)-(2*r*\sum\limits_{i=1}^{n}(a_i-b_i)+n*r^2)-(2*\sum\limits_{i=1}^na_i*b_i))
\]

这样我们就可以发现,第一部分是一个定值,第二部分只需要从\(-m\)到\(m\)枚举一下\(r\)就能算出,现在问题就是算第三部分。发现第三部分形式特别像卷积,就直接将\(a\)数组翻一下倍,表示旋转,\(b\)数字翻转一下。然后\(fft\)后算一个最大值即可。

代码

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm> using namespace std;
const int MAXN = 50005<<3;
const double Pi=acos(-1);
typedef long long LL; inline int rd(){
int x=0,f=1;char ch=getchar();
while(!isdigit(ch)) {f=ch=='-'?0:1;ch=getchar();}
while(isdigit(ch)) {x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}
return f?x:-x;
} int n,m,limit=1,rev[MAXN];
LL ans,sqA,sqB,A,B,Sum=1e18; struct Complex{
double x,y;
Complex(double xx=0,double yy=0) {x=xx;y=yy;}
}a[MAXN],b[MAXN]; Complex operator +(const Complex A,const Complex B) {return Complex(A.x+B.x,A.y+B.y);}
Complex operator -(const Complex A,const Complex B) {return Complex(A.x-B.x,A.y-B.y);}
Complex operator *(const Complex A,const Complex B) {return Complex(A.x*B.x-A.y*B.y,A.x*B.y+A.y*B.x);} inline void fft(Complex *f,int type){
for(int i=0;i<limit;i++)
if(i<rev[i]) swap(f[i],f[rev[i]]);
int len;Complex Wn,w,tmp;
for(int p=2;p<=limit;p<<=1){
len=p>>1;Wn=Complex(cos(Pi/len),type*sin(Pi/len));
for(int k=0;k<limit;k+=p){
w=Complex(1,0);
for(int l=k;l<k+len;l++){
tmp=f[l+len]*w;
f[l+len]=f[l]-tmp;f[l]=f[l]+tmp;
w=w*Wn;
}
}
}
} int main(){
n=rd(),m=rd();int x;
for(int i=1;i<=n;i++) {
x=rd();sqA+=x*x;A+=x;a[i].x=(double)x;
}
for(int i=1;i<=n;i++) {
x=rd();sqB+=x*x;B+=x;b[n-i+1].x=(double)x;
}
for(int i=1;i<=n;i++) a[i+n].x=a[i].x;
while(limit<=3*n) limit<<=1;
for(int i=0;i<limit;i++) rev[i]=(rev[i>>1]>>1)|((i&1)?limit>>1:0);
fft(a,1);fft(b,1);for(int i=0;i<limit;i++) a[i]=a[i]*b[i];fft(a,-1);
for(int i=n+1;i<=n*2;i++) ans=max(ans,(LL)(a[i].x/limit+0.5));
ans<<=1;ans=-ans;
for(int i=-m;i<=m;i++) Sum=min(Sum,(LL)(A-B)*2*i+(LL)n*i*i);
ans+=Sum+sqA+sqB;cout<<ans<<endl;
return 0;
}

LUOGU P3723 [AH2017/HNOI2017]礼物 (fft)的更多相关文章

  1. [Luogu P3723] [AH2017/HNOI2017]礼物 (FFT 卷积)

    题面 传送门:洛咕 Solution 调得我头大,我好菜啊 好吧,我们来颓柿子吧: 我们可以只旋转其中一个手环.对于亮度的问题,因为可以在两个串上增加亮度,我们也可以看做是可以为负数的. 所以说,我们 ...

  2. 洛谷 P3723 [AH2017/HNOI2017]礼物 解题报告

    P3723 [AH2017/HNOI2017]礼物 题目描述 我的室友最近喜欢上了一个可爱的小女生.马上就要到她的生日了,他决定买一对情侣手环,一个留给自己,一个送给她.每个手环上各有 \(n\) 个 ...

  3. P3723 [AH2017/HNOI2017]礼物

    题目链接:[AH2017/HNOI2017]礼物 题意: 两个环x, y 长度都为n k可取 0 ~ n - 1      c可取任意值 求 ∑ ( x[i] - y[(i + k) % n + 1] ...

  4. 洛谷P3723 [AH2017/HNOI2017]礼物(FFT)

    传送门 首先,两个数同时增加自然数值相当于只有其中一个数增加(此增加量可以小于0) 我们令$x$为当前的增加量,${a},{b}$分别为旋转后的两个数列,那么$$ans=\sum_{i=1}^n(a_ ...

  5. [AH2017/HNOI2017]礼物(FFT)

    题目描述 我的室友最近喜欢上了一个可爱的小女生.马上就要到她的生日了,他决定买一对情侣手 环,一个留给自己,一 个送给她.每个手环上各有 n 个装饰物,并且每个装饰物都有一定的亮度.但是在她生日的前一 ...

  6. Luogu 3723 [AH2017/HNOI2017]礼物

    BZOJ 4827 $$\sum_{i = 1}^{n}(x_i - y_i + c)^2 = \sum_{i = 1}^{n}(x_i^2 + y_i^2 + c^2 - 2 * x_iy_i + ...

  7. 洛谷P3723 [AH2017/HNOI2017]礼物

    吴迪说他化学会考上十分钟就想出来了,太神了%%%不过我也十分钟 但是调了一个多小时啊大草 懒得人话翻译了,自己康吧: 我的室友(真的是室友吗?)最近喜欢上了一个可爱的小女生.马上就要到她的生日了,他决 ...

  8. 笔记-[AH2017/HNOI2017]礼物

    笔记-[AH2017/HNOI2017]礼物 [AH2017/HNOI2017]礼物 \[\begin{split} ans_i=&\sum_{j=1}^n(a_j-b_j+i)^2\\ =& ...

  9. bzoj 4827: [Hnoi2017]礼物 [fft]

    4827: [Hnoi2017]礼物 题意:略 以前做的了 化一化式子就是一个卷积和一些常数项 我记着确定调整值还要求一下导... #include <iostream> #include ...

随机推荐

  1. app混合开发 fastlick.js 在ios上 input标签点击 不灵敏 处理

    ios11 上有这个问题 而老版本的ios没有 会出现这个的原因是使用fastclick.js点击后input没有获取焦点,所以只需要在fasyclick的源码的这个位置 可以直接在源码内搜索关键字找 ...

  2. date -d 对于时间的控制

    [root@ ~]# date "+%Y"2019[root@ ~]# date "+%Y%m%d"20190826 [root@localhost ~]# d ...

  3. ToDoList 增删改查

    ToDoList 主要功能 增加数据 删除数据 修改数据 查寻数据渲染页面 1 . HTML页面 <!DOCTYPE html> <html lang="en"& ...

  4. 【JZOJ6431】【luoguP5658】【CSP-S2019】括号树

    description analysis 用栈维护一下树上路径未匹配的左括号,然后在树上找右括号匹配,设\(f[i]\)为\(i\)节点的贡献,\(g[i]\)是答案 为左括号可以直接继承父节点的信息 ...

  5. mongodb4.0数据库权限配置

    今天给大家分享一个关于mongodb数据库权限配置的小知识点,这里呢,我用的是mongodb4.0版本,下载地址:https://www.mongodb.com/download-center/com ...

  6. Shiro学习(18)并发人数限制

    在某些项目中可能会遇到如每个账户同时只能有一个人登录或几个人同时登录,如果同时有多人登录:要么不让后者登录:要么踢出前者登录(强制退出).比如spring security就直接提供了相应的功能:Sh ...

  7. MySQL常规操作以及问题

    背景 作为一个前端,偶尔搞下后端 要熟悉 SQL 操作,但是一段时间不用 会大部分忘记,之后又要重新查资料 所以自己整理一遍经常用到的 SQL 操作 和使用过程遇到的问题,方便自己快速查阅 一.安装 ...

  8. String、StringBuffer、StringBuilder有什么区别?

    1.在字符串不经常发生变化的业务场景优先使用String(代码更清晰简洁).如常量的声明,少量的字符串操作(拼接,删除等). 2.在单线程情况下,如有大量的字符串操作情况,应该使用StringBuil ...

  9. linux 编译指定库、头文件的路径问题(转)

    1. 为什么会出现undefined reference to 'xxxxx'错误? 首先这是链接错误,不是编译错误,也就是说如果只有这个错误,说明你的程序源码本身没有问题,是你用编译器编译时参数用得 ...

  10. Spring Boot跨域问题解决方案

    @Configurationpublic class CorsConfig { @Bean public FilterRegistrationBean corsFilter() { UrlBasedC ...