传送门

解题思路

  首先我们设变化量为\(r\),那么最终的答案就可以写成 :

\[ans=min(\sum\limits_{i=1}^n(a_i-b_i+r)^2)
\]

\[ans=min(\sum\limits_{i=1}^n(a_i-b_i)^2-2*r*\sum\limits_{i=1}^{n}(a_i-b_i)+n*r^2)
\]

继续化简:

\[ans=min(\sum\limits_{i=1}^n a_i^2+\sum\limits_{i=1}^n b_i^2-2*\sum\limits_{i=1}^na_i*b_i-2*r*\sum\limits_{i=1}^{n}(a_i-b_i)+n*r^2)
\]

\[ans=min((\sum\limits_{i=1}^n a_i^2+\sum\limits_{i=1}^n b_i^2)-(2*r*\sum\limits_{i=1}^{n}(a_i-b_i)+n*r^2)-(2*\sum\limits_{i=1}^na_i*b_i))
\]

这样我们就可以发现,第一部分是一个定值,第二部分只需要从\(-m\)到\(m\)枚举一下\(r\)就能算出,现在问题就是算第三部分。发现第三部分形式特别像卷积,就直接将\(a\)数组翻一下倍,表示旋转,\(b\)数字翻转一下。然后\(fft\)后算一个最大值即可。

代码

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm> using namespace std;
const int MAXN = 50005<<3;
const double Pi=acos(-1);
typedef long long LL; inline int rd(){
int x=0,f=1;char ch=getchar();
while(!isdigit(ch)) {f=ch=='-'?0:1;ch=getchar();}
while(isdigit(ch)) {x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}
return f?x:-x;
} int n,m,limit=1,rev[MAXN];
LL ans,sqA,sqB,A,B,Sum=1e18; struct Complex{
double x,y;
Complex(double xx=0,double yy=0) {x=xx;y=yy;}
}a[MAXN],b[MAXN]; Complex operator +(const Complex A,const Complex B) {return Complex(A.x+B.x,A.y+B.y);}
Complex operator -(const Complex A,const Complex B) {return Complex(A.x-B.x,A.y-B.y);}
Complex operator *(const Complex A,const Complex B) {return Complex(A.x*B.x-A.y*B.y,A.x*B.y+A.y*B.x);} inline void fft(Complex *f,int type){
for(int i=0;i<limit;i++)
if(i<rev[i]) swap(f[i],f[rev[i]]);
int len;Complex Wn,w,tmp;
for(int p=2;p<=limit;p<<=1){
len=p>>1;Wn=Complex(cos(Pi/len),type*sin(Pi/len));
for(int k=0;k<limit;k+=p){
w=Complex(1,0);
for(int l=k;l<k+len;l++){
tmp=f[l+len]*w;
f[l+len]=f[l]-tmp;f[l]=f[l]+tmp;
w=w*Wn;
}
}
}
} int main(){
n=rd(),m=rd();int x;
for(int i=1;i<=n;i++) {
x=rd();sqA+=x*x;A+=x;a[i].x=(double)x;
}
for(int i=1;i<=n;i++) {
x=rd();sqB+=x*x;B+=x;b[n-i+1].x=(double)x;
}
for(int i=1;i<=n;i++) a[i+n].x=a[i].x;
while(limit<=3*n) limit<<=1;
for(int i=0;i<limit;i++) rev[i]=(rev[i>>1]>>1)|((i&1)?limit>>1:0);
fft(a,1);fft(b,1);for(int i=0;i<limit;i++) a[i]=a[i]*b[i];fft(a,-1);
for(int i=n+1;i<=n*2;i++) ans=max(ans,(LL)(a[i].x/limit+0.5));
ans<<=1;ans=-ans;
for(int i=-m;i<=m;i++) Sum=min(Sum,(LL)(A-B)*2*i+(LL)n*i*i);
ans+=Sum+sqA+sqB;cout<<ans<<endl;
return 0;
}

LUOGU P3723 [AH2017/HNOI2017]礼物 (fft)的更多相关文章

  1. [Luogu P3723] [AH2017/HNOI2017]礼物 (FFT 卷积)

    题面 传送门:洛咕 Solution 调得我头大,我好菜啊 好吧,我们来颓柿子吧: 我们可以只旋转其中一个手环.对于亮度的问题,因为可以在两个串上增加亮度,我们也可以看做是可以为负数的. 所以说,我们 ...

  2. 洛谷 P3723 [AH2017/HNOI2017]礼物 解题报告

    P3723 [AH2017/HNOI2017]礼物 题目描述 我的室友最近喜欢上了一个可爱的小女生.马上就要到她的生日了,他决定买一对情侣手环,一个留给自己,一个送给她.每个手环上各有 \(n\) 个 ...

  3. P3723 [AH2017/HNOI2017]礼物

    题目链接:[AH2017/HNOI2017]礼物 题意: 两个环x, y 长度都为n k可取 0 ~ n - 1      c可取任意值 求 ∑ ( x[i] - y[(i + k) % n + 1] ...

  4. 洛谷P3723 [AH2017/HNOI2017]礼物(FFT)

    传送门 首先,两个数同时增加自然数值相当于只有其中一个数增加(此增加量可以小于0) 我们令$x$为当前的增加量,${a},{b}$分别为旋转后的两个数列,那么$$ans=\sum_{i=1}^n(a_ ...

  5. [AH2017/HNOI2017]礼物(FFT)

    题目描述 我的室友最近喜欢上了一个可爱的小女生.马上就要到她的生日了,他决定买一对情侣手 环,一个留给自己,一 个送给她.每个手环上各有 n 个装饰物,并且每个装饰物都有一定的亮度.但是在她生日的前一 ...

  6. Luogu 3723 [AH2017/HNOI2017]礼物

    BZOJ 4827 $$\sum_{i = 1}^{n}(x_i - y_i + c)^2 = \sum_{i = 1}^{n}(x_i^2 + y_i^2 + c^2 - 2 * x_iy_i + ...

  7. 洛谷P3723 [AH2017/HNOI2017]礼物

    吴迪说他化学会考上十分钟就想出来了,太神了%%%不过我也十分钟 但是调了一个多小时啊大草 懒得人话翻译了,自己康吧: 我的室友(真的是室友吗?)最近喜欢上了一个可爱的小女生.马上就要到她的生日了,他决 ...

  8. 笔记-[AH2017/HNOI2017]礼物

    笔记-[AH2017/HNOI2017]礼物 [AH2017/HNOI2017]礼物 \[\begin{split} ans_i=&\sum_{j=1}^n(a_j-b_j+i)^2\\ =& ...

  9. bzoj 4827: [Hnoi2017]礼物 [fft]

    4827: [Hnoi2017]礼物 题意:略 以前做的了 化一化式子就是一个卷积和一些常数项 我记着确定调整值还要求一下导... #include <iostream> #include ...

随机推荐

  1. centos7 nodejs二进制安装

    1.安装文件下载 1.下载地址:http://nodejs.cn/download/ 2.选择一个合适的版本下载 2.安装步骤 1.将安装包上传到指定位置(我习惯放到:/usr/local/appli ...

  2. leetcode-160场周赛-5238-找出给定方程的正整数解

    题目描述: class Solution: def findSolution(self, customfunction: 'CustomFunction', z: int) -> List[Li ...

  3. Android中的Handler,Looper,Message机制

    Android的消息处理有三个核心类:Looper,Handler和Message.其实还有一个Message Queue(消息队列),但是MQ被封装到Looper里面了,我们不会直接与MQ打交道,因 ...

  4. jq鼠标移入和移出事件

    前几天帮朋友做了一个单页面,其中有个效果就是鼠标移动到头像上变换头像样式,当鼠标移出时恢复头像样式.当时没多想,脑子就蹦出了mouseover,mouseout两个方法. 但是在编写页面的过程中,无论 ...

  5. vs2012+wdk8.0 搭建wdf驱动开发环境

    开发环境搭建: 系统:win7 x64 工具:vs2012 + WDK8.0 插件:wdfcoinstaller.msi (1)先安装vs2012,再安装wdk8.0,这样在打开vs2012时可以创建 ...

  6. mvc 前台传入后台

    转自:http://blog.csdn.net/huangyezi/article/details/45274553 一个很简单的分部视图,Model使用的是列表,再来看看调用该分部视图的action ...

  7. jquery中的ajax请求用法以及参数详情

    url: 要求为String类型的参数,(默认为当前页地址)发送请求的地址. type: 要求为String类型的参数,请求方式(post或get)默认为get.注意其他http请求方法,例如put和 ...

  8. HDU 6685 Rikka with Coin (枚举 思维)

    2019 杭电多校 9 1006 题目链接:HDU 6685 比赛链接:2019 Multi-University Training Contest 9 Problem Description Rik ...

  9. JasperReports入门,JasperReports是什么?

    Jasper报表 报表开发过程中面临的常见故障归纳在以下几点: 核心变化:为了反映业务发生变化或改进它通常以改变报告的核心逻辑. 结果输出:有各种各样的格式,报表可导出到如:HTML,文本,PDF,M ...

  10. C# 简单的往txt中写日志,调试时很有用

    原文 http://blog.csdn.net/hejialin666/article/details/6106648 有些程序在调试时很难抓住断点(如服务程序),有些程序需要循环无数次,要看每一次或 ...