PIGS
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 15721   Accepted: 7021

Description

Mirko works on a pig farm that consists of M locked pig-houses and Mirko can't unlock any pighouse because he doesn't have the keys. Customers come to the farm one after another. Each of them has keys to some pig-houses and wants to buy a certain number of
pigs. 
All data concerning customers planning to visit the farm on that particular day are available to Mirko early in the morning so that he can make a sales-plan in order to maximize the number of pigs sold. 
More precisely, the procedure is as following: the customer arrives, opens all pig-houses to which he has the key, Mirko sells a certain number of pigs from all the unlocked pig-houses to him, and, if Mirko wants, he can redistribute the remaining pigs across
the unlocked pig-houses. 
An unlimited number of pigs can be placed in every pig-house. 
Write a program that will find the maximum number of pigs that he can sell on that day.

Input

The first line of input contains two integers M and N, 1 <= M <= 1000, 1 <= N <= 100, number of pighouses and number of customers. Pig houses are numbered from 1 to M and customers are numbered from 1 to N. 
The next line contains M integeres, for each pig-house initial number of pigs. The number of pigs in each pig-house is greater or equal to 0 and less or equal to 1000. 
The next N lines contains records about the customers in the following form ( record about the i-th customer is written in the (i+2)-th line): 
A K1 K2 ... KA B It means that this customer has key to the pig-houses marked with the numbers K1, K2, ..., KA (sorted nondecreasingly ) and that he wants to buy B pigs. Numbers A and B can be equal to 0.

Output

The first and only line of the output should contain the number of sold pigs.

Sample Input

3 3
3 1 10
2 1 2 2
2 1 3 3
1 2 6

Sample Output

7

Source

解题报告
昨天開始学网络流,这是第一题网络流建图的题。
题目意思:
养猪场M个猪圈。每一个猪圈都上锁,主人又没有钥匙。N个顾客买猪。且每一个顾客有一些猪圈的钥匙(这是什么情况,主人没有钥匙。反而买主有钥匙。sad...)
一天,要到养猪场买猪的顾客都会提前告诉养猪场主人。包含拥有的钥匙。买几头猪。养猪场主人能够安排销售计划使得卖出去的猪数目最大。
每当顾客来了。会把他拥有钥匙的猪圈全都打开,养猪场主人挑一些猪买出去,养猪场主人还能够又一次分配被打开猪圈的猪。

猪圈能够容纳猪的数量不限。

思路:
由于一開始猪圈是上锁的。所以把顾客其中转站,另设两节点,源点和汇点。
源点和每一个猪圈的第一个顾客连边。边的权值是猪圈里的猪的数目。
顾客j紧跟着顾客i打开某猪圈,则<i,j>的权值是+oo,表示假设顾客j在顾客i之后打开猪圈,主人能够跟据顾客j的需求把其它猪圈的猪赶到该猪圈,这样顾客j就能够买到尽可能多的猪。
每一个顾客和汇点相连。边权是每一个顾客的需求量。

#include <iostream>
#include <queue>
#include <cstdio>
#include <cstring>
#define inf 99999999
#define M 10100
#define N 1100
using namespace std;
int pigh[M],edge[N][N],p[N],a[N],pre[N],m,n,flow;
queue<int >Q;
void ek()
{
while(1)
{
while(!Q.empty())Q.pop();
memset(a,0,sizeof(a));
memset(p,0,sizeof(p));
a[0]=inf;
Q.push(0);
while(!Q.empty())
{
int u=Q.front();
Q.pop();
for(int v=0;v<=n+1;v++)
{
if(!a[v]&&edge[u][v]>0)
{
a[v]=min(a[u],edge[u][v]);
p[v]=u;
Q.push(v);
}
}
if(a[n+1])break;
}
if(!a[n+1])break;
for(int u=n+1;u!=0;u=p[u])
{
edge[p[u]][u]-=a[n+1];
edge[u][p[u]]+=a[n+1];
}
flow+=a[n+1];
}
}
int main()
{
int i,j,k,u,b;
while(~scanf("%d%d",&m,&n))
{
flow=0;
memset(pigh,0,sizeof(pigh));
memset(edge,0,sizeof(edge));
memset(pre,0,sizeof(pre));
for(i=1; i<=m; i++)
scanf("%d",&pigh[i]);
for(i=1; i<=n; i++)
{
scanf("%d",&k);
while(k--)
{
scanf("%d",&u);
if(!pre[u])
{
edge[pre[u]][i]+=pigh[u];
pre[u]=i;
}
else
{
edge[pre[u]][i]=inf;
pre[u]=i;
}
}
scanf("%d",&b);
edge[i][n+1]+=b;
}
ek();
// for(i=0;i<=n+1;i++)
// {
// for(j=0;j<=n+1;j++)
// {
// cout<<edge[i][j]<<" ";
// }
// cout<<endl;
// }
printf("%d\n",flow);
}
return 0;
}

POJ1149_PIGS(网络流/EK)的更多相关文章

  1. 网络流EK

    #include <iostream> #include <queue> #include <string.h> #define MAX 302 using nam ...

  2. POJ 1459 网络流 EK算法

    题意: 2 1 1 2 (0,1)20 (1,0)10 (0)15 (1)20 2 1 1 2 表示 共有2个节点,生产能量的点1个,消耗能量的点1个, 传递能量的通道2条:(0,1)20 (1,0) ...

  3. 初涉网络流[EK&dinic]

    主要还是板子 Edmonds-Karp 从S开始bfs,直到找到一条到达T的路径后将该路径增广,并重复这一过程. 在处理过程中,为了应对“找到的一条路径把其他路径堵塞”的情况,采用了建反向弧的方式来实 ...

  4. 最大网络流 EK 算法

    网络流是什么类型的问题,看一道题目你就知道了 点击打开链接 . 默认具备图论的基本知识,网络流概念比较多,先看看书熟悉一下那些概念.比较好!一个寄出的网络最大流.EK算法写的. 这是一幅网络,求S   ...

  5. 网络流EK算法模板

    \(EK\)算法的思想就是每一次找一条增广路进行增广. 注意几个点: 存图时\(head\)数组要设为\(-1\). 存图的代码是这样的: inline void add(int u, int v, ...

  6. HDU1532 Drainage Ditches 网络流EK算法

    Drainage Ditches Problem Description Every time it rains on Farmer John's fields, a pond forms over ...

  7. 2016计蒜之道复赛 菜鸟物流的运输网络 网络流EK

    题源:https://nanti.jisuanke.com/t/11215 分析:这题是一个比较经典的网络流模型.把中间节点当做源,两端节点当做汇,对节点进行拆点,做一个流量为 22 的流即可. 吐槽 ...

  8. 网络流 ek

    hdu3549 求最大流果题 ek算法 先bfs出一条流 然后通过不断地添加增广路 得到最大流(证明在算法书上都有) 增加了一个流 就加反向边 允许程序通过走方向边的方式进行“回滚” i^1 = i+ ...

  9. POJ-3436 ACM Computer Factory(网络流EK)

    As you know, all the computers used for ACM contests must be identical, so the participants compete ...

随机推荐

  1. Ubuntu下安装Samba服务器

    闲来无聊尝试自己安装下Samba服务器,使本机和虚拟机可以无障碍传输文件(虽然用VMwaretools可传,但总感觉麻烦,而且速度欠佳) 首先,同安装qemu一样,在安装之前要确定你的系统apt列表已 ...

  2. CSS:CSS 边框

    ylbtech-CSS:CSS 边框 1.返回顶部 1. CSS 边框 CSS 边框属性 边框样式 边框样式属性指定要显示什么样的边界.  border-style属性用来定义边框的样式 border ...

  3. socket模拟通信

    import java.io.FileOutputStream; import java.io.IOException; import java.io.InputStream; import java ...

  4. CentOS6.8搭建LNMP环境

    selinux可能会致使编译安装失败,我们先禁用它.永久禁用,需要重启生效 sed -i ‘s/SELINUX=enforcing/SELINUX=disabled/g’ /etc/selinux/c ...

  5. idea中如何查看jar包中的源码(非maven),以oracle的ojdbc为例

    文章目录 背景 解决 背景 工作需要查看oracle的部分源码(ojdbc.jar),maven并没有这个依赖,单纯的导入jar包无法查看. 解决 将ojdbc.jar 安装到本地仓库,maven从本 ...

  6. 梯度下降:SGD vs Momentum vs NAG vs Adagrad vs Adadelta vs RMSprop vs Adam

    原文地址:https://www.jianshu.com/p/7a049ae73f56 梯度下降优化基本公式:\({\theta\leftarrow\theta-\eta\cdot\nabla_\th ...

  7. Java多态的实现机制是什么,写得非常好!

    作者:crane_practice www.cnblogs.com/crane-practice/p/3671074.html Java多态的实现机制是父类或接口定义的引用变量可以指向子类或实现类的实 ...

  8. MySQL 到底是怎么解决幻读的?

    ; 原理:将历史数据存一份快照,所以其他事务增加与删除数据,对于当前事务来说是不可见的. 2. next-key 锁 (当前读) next-key 锁包含两部分: 记录锁(行锁) 间隙锁 记录锁是加在 ...

  9. locust性能测试框架随笔

    现在有很多的性能测试工具,比如说我们熟悉的loadrunner.jmeter.ab.webbench等等,这些工具如果对一个没用过的朋友来说,学习起来比较不容易,但是如果你能看懂python代码,会写 ...

  10. C语言结构体数组

    #include <stdio.h> int main() { /*************************************************** *结构体数组:数组 ...