PIGS
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 15721   Accepted: 7021

Description

Mirko works on a pig farm that consists of M locked pig-houses and Mirko can't unlock any pighouse because he doesn't have the keys. Customers come to the farm one after another. Each of them has keys to some pig-houses and wants to buy a certain number of
pigs. 
All data concerning customers planning to visit the farm on that particular day are available to Mirko early in the morning so that he can make a sales-plan in order to maximize the number of pigs sold. 
More precisely, the procedure is as following: the customer arrives, opens all pig-houses to which he has the key, Mirko sells a certain number of pigs from all the unlocked pig-houses to him, and, if Mirko wants, he can redistribute the remaining pigs across
the unlocked pig-houses. 
An unlimited number of pigs can be placed in every pig-house. 
Write a program that will find the maximum number of pigs that he can sell on that day.

Input

The first line of input contains two integers M and N, 1 <= M <= 1000, 1 <= N <= 100, number of pighouses and number of customers. Pig houses are numbered from 1 to M and customers are numbered from 1 to N. 
The next line contains M integeres, for each pig-house initial number of pigs. The number of pigs in each pig-house is greater or equal to 0 and less or equal to 1000. 
The next N lines contains records about the customers in the following form ( record about the i-th customer is written in the (i+2)-th line): 
A K1 K2 ... KA B It means that this customer has key to the pig-houses marked with the numbers K1, K2, ..., KA (sorted nondecreasingly ) and that he wants to buy B pigs. Numbers A and B can be equal to 0.

Output

The first and only line of the output should contain the number of sold pigs.

Sample Input

3 3
3 1 10
2 1 2 2
2 1 3 3
1 2 6

Sample Output

7

Source

解题报告
昨天開始学网络流,这是第一题网络流建图的题。
题目意思:
养猪场M个猪圈。每一个猪圈都上锁,主人又没有钥匙。N个顾客买猪。且每一个顾客有一些猪圈的钥匙(这是什么情况,主人没有钥匙。反而买主有钥匙。sad...)
一天,要到养猪场买猪的顾客都会提前告诉养猪场主人。包含拥有的钥匙。买几头猪。养猪场主人能够安排销售计划使得卖出去的猪数目最大。
每当顾客来了。会把他拥有钥匙的猪圈全都打开,养猪场主人挑一些猪买出去,养猪场主人还能够又一次分配被打开猪圈的猪。

猪圈能够容纳猪的数量不限。

思路:
由于一開始猪圈是上锁的。所以把顾客其中转站,另设两节点,源点和汇点。
源点和每一个猪圈的第一个顾客连边。边的权值是猪圈里的猪的数目。
顾客j紧跟着顾客i打开某猪圈,则<i,j>的权值是+oo,表示假设顾客j在顾客i之后打开猪圈,主人能够跟据顾客j的需求把其它猪圈的猪赶到该猪圈,这样顾客j就能够买到尽可能多的猪。
每一个顾客和汇点相连。边权是每一个顾客的需求量。

#include <iostream>
#include <queue>
#include <cstdio>
#include <cstring>
#define inf 99999999
#define M 10100
#define N 1100
using namespace std;
int pigh[M],edge[N][N],p[N],a[N],pre[N],m,n,flow;
queue<int >Q;
void ek()
{
while(1)
{
while(!Q.empty())Q.pop();
memset(a,0,sizeof(a));
memset(p,0,sizeof(p));
a[0]=inf;
Q.push(0);
while(!Q.empty())
{
int u=Q.front();
Q.pop();
for(int v=0;v<=n+1;v++)
{
if(!a[v]&&edge[u][v]>0)
{
a[v]=min(a[u],edge[u][v]);
p[v]=u;
Q.push(v);
}
}
if(a[n+1])break;
}
if(!a[n+1])break;
for(int u=n+1;u!=0;u=p[u])
{
edge[p[u]][u]-=a[n+1];
edge[u][p[u]]+=a[n+1];
}
flow+=a[n+1];
}
}
int main()
{
int i,j,k,u,b;
while(~scanf("%d%d",&m,&n))
{
flow=0;
memset(pigh,0,sizeof(pigh));
memset(edge,0,sizeof(edge));
memset(pre,0,sizeof(pre));
for(i=1; i<=m; i++)
scanf("%d",&pigh[i]);
for(i=1; i<=n; i++)
{
scanf("%d",&k);
while(k--)
{
scanf("%d",&u);
if(!pre[u])
{
edge[pre[u]][i]+=pigh[u];
pre[u]=i;
}
else
{
edge[pre[u]][i]=inf;
pre[u]=i;
}
}
scanf("%d",&b);
edge[i][n+1]+=b;
}
ek();
// for(i=0;i<=n+1;i++)
// {
// for(j=0;j<=n+1;j++)
// {
// cout<<edge[i][j]<<" ";
// }
// cout<<endl;
// }
printf("%d\n",flow);
}
return 0;
}

POJ1149_PIGS(网络流/EK)的更多相关文章

  1. 网络流EK

    #include <iostream> #include <queue> #include <string.h> #define MAX 302 using nam ...

  2. POJ 1459 网络流 EK算法

    题意: 2 1 1 2 (0,1)20 (1,0)10 (0)15 (1)20 2 1 1 2 表示 共有2个节点,生产能量的点1个,消耗能量的点1个, 传递能量的通道2条:(0,1)20 (1,0) ...

  3. 初涉网络流[EK&dinic]

    主要还是板子 Edmonds-Karp 从S开始bfs,直到找到一条到达T的路径后将该路径增广,并重复这一过程. 在处理过程中,为了应对“找到的一条路径把其他路径堵塞”的情况,采用了建反向弧的方式来实 ...

  4. 最大网络流 EK 算法

    网络流是什么类型的问题,看一道题目你就知道了 点击打开链接 . 默认具备图论的基本知识,网络流概念比较多,先看看书熟悉一下那些概念.比较好!一个寄出的网络最大流.EK算法写的. 这是一幅网络,求S   ...

  5. 网络流EK算法模板

    \(EK\)算法的思想就是每一次找一条增广路进行增广. 注意几个点: 存图时\(head\)数组要设为\(-1\). 存图的代码是这样的: inline void add(int u, int v, ...

  6. HDU1532 Drainage Ditches 网络流EK算法

    Drainage Ditches Problem Description Every time it rains on Farmer John's fields, a pond forms over ...

  7. 2016计蒜之道复赛 菜鸟物流的运输网络 网络流EK

    题源:https://nanti.jisuanke.com/t/11215 分析:这题是一个比较经典的网络流模型.把中间节点当做源,两端节点当做汇,对节点进行拆点,做一个流量为 22 的流即可. 吐槽 ...

  8. 网络流 ek

    hdu3549 求最大流果题 ek算法 先bfs出一条流 然后通过不断地添加增广路 得到最大流(证明在算法书上都有) 增加了一个流 就加反向边 允许程序通过走方向边的方式进行“回滚” i^1 = i+ ...

  9. POJ-3436 ACM Computer Factory(网络流EK)

    As you know, all the computers used for ACM contests must be identical, so the participants compete ...

随机推荐

  1. (1)sqlserver2017安装

    本体 https://www.microsoft.com/zh-cn/sql-server/sql-server-downloads 图形管理工具ssm 文档 https://docs.microso ...

  2. CPU指令集的虚拟化(x86)

    IA-32 (x86)[edit] Main article: X86 virtualization The IA-32 instruction set of the Pentium processo ...

  3. 用注解实现SpringMvc

    在第一次完成spirngmvc代码的基础上: 开始时代码 index.jsp <%@ page contentType="text/html;charset=UTF-8" l ...

  4. 服务器搭建node环境

    最近由于工作原因开始学习服务器的搭建和环境配置.记录一下我在服务器搭建node环境的步骤.中间踩了很多坑. 首先,确定自己的服务器可以连接到外网,如果连接不上的话,会出现ETIMEOUT的报错,但这只 ...

  5. 50-Ubuntu-其他命令-2-软硬链接示意图

    在Linux中,文件名和文件的数据是分开存储的. 使用ls -lh可以查看一个文件的硬链接数. 在日常工作中,几乎不会建立文件的硬链接数. 在Linux中,只有文件的硬链接数等于0才会被删除.如下图第 ...

  6. LCA的RMQ求法

    参考博客 仔细想一想:最近的公共祖先,其实,搜索时回朔,连通这两点,那深度最低肯定是最近的公共祖先啊. 那这样就可以变成RMQ问题了. #include<stdio.h> #include ...

  7. win7+ubuntu双系统安装

    XP+ubuntu双系统可參考 xp硬盘上安装ubuntu12.04双系统 1.XP安全不再,最终将吾等磨机的人逼上梁山,是时候做一个win7+ubuntu的双系统了. 废话少说,直接进入主题,先腾出 ...

  8. tp6 控制器不存在:app\index\controller\Index

    tp6 控制器不存在:app\index\controller\Index config/app.php 修改如下 'auto_multi_app' => true,

  9. 多线程中join的解释(转)

    文章来源:https://www.zhihu.com/question/61446671 这个join可以理解为“加入”,其含义与英语里面讲“Come on,join us”中的join类似.假设线程 ...

  10. Android开发 MediaPlayer播放本地视频完善的demo(只是代码记录)

    xml <?xml version="1.0" encoding="utf-8"?> <androidx.constraintlayout.w ...