【题解】有标号的DAG计数1
[HZOI 2015] 有标号的DAG计数 I
设\(f_i\)为\(i\)个点时的DAG图,(不必联通)
考虑如何转移,由于一个DAG必然有至少一个出度为\(0\)的点,所以我们钦定多少个出度为\(0\)的点转移。
考虑如何保证没有环,钦定完出度为\(0\)的点后,这些点就等着被连接了。还剩下一些点,这些点只要不构成环就好了,就是个子结构,访问以前的DP数组就好了。
\]
这样转移显然有方案重复的情况,因为如此计数就破坏了钦定,出度为\(0\)点可能更多!(我们不加限制的枚举\(j(i-j)\)条边是否存在)。
考虑一种方案出现了多少次,很显然出现的分布是这样的:
\]
借鉴一下[【题解】HAOI2018]染色(NTT+容斥/二项式反演)(怎么又是你),直接乘上一个\((-1)^?\)就就容斥掉了,试一试就发现是\((-1)^{j+1}\)
转移是:
\]
或者学习神Itst的神仙待定系数法
设枚举的出度为\(0\)的点的个数为i时的容斥系数为\(f_i\),那么一个实际上存在\(x\)个出度为0的点的DAG的贡献就是\(\sum\limits_{i=1}^x \binom{x}{i} f_i = 1\),不难由二项式定理知道\(fi=(−1)^{i−1}\)
orz orz
//@winlere
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std; typedef long long ll;
inline int qr(){
register int ret=0,f=0;
register char c=getchar();
while(c<48||c>57)f|=c==45,c=getchar();
while(c>=48&&c<=57) ret=ret*10+c-48,c=getchar();
return f?-ret:ret;
}
const int maxn=5e3+5;
const int mod=10007;
int c[maxn][maxn];
int dp[maxn];
int bin[maxn*maxn];
int main(){
freopen("DAG.in","r",stdin);
freopen("DAG.out","w",stdout);
int n=qr();
bin[0]=1;dp[0]=1;
for(register int t=0;t<=n;++t){
c[t][0]=1;
for(register int i=1;i<=t;++i){
c[t][i]=(c[t-1][i-1]+c[t-1][i])%mod;
}
}
for(register int t=1;t<=n*n;++t) bin[t]=(bin[t-1]<<1)%mod;
for(register int t=1;t<=n;++t){
for(register int i=1,d;i<=t;++i){
d=mod-c[t][i]*bin[i*(t-i)]%mod*dp[t-i]%mod;
if(i&1) d=mod-d;
dp[t]=(dp[t]+d)%mod;
}
}
printf("%d\n",dp[n]);
return 0;
}
【题解】有标号的DAG计数1的更多相关文章
- 【题解】有标号的DAG计数4
[HZOI 2015] 有标号的DAG计数 IV 我们已经知道了\(f_i\)表示不一定需要联通的\(i\)节点的dag方案,考虑合并 参考[题解]P4841 城市规划(指数型母函数+多项式Ln),然 ...
- 【题解】有标号的DAG计数3
[HZOI 2015] 有标号的DAG计数 III 我们已经知道了\(f_i\)表示不一定需要联通的\(i\)节点的dag方案,考虑合并 参考[题解]P4841 城市规划(指数型母函数+多项式Ln), ...
- 【题解】有标号的DAG计数2
[HZOI 2015] 有标号的DAG计数 II \(I\)中DP只有一个数组, \[ dp_i=\sum{i\choose j}2^{j(i-j)}dp_{i-j}(-1)^{j+1} \] 不会. ...
- 有标号的DAG计数(FFT)
有标号的DAG计数系列 有标号的DAG计数I 题意 给定一正整数\(n\),对\(n\)个点有标号的有向无环图(可以不连通)进行计数,输出答案\(mod \ 10007\)的结果.\(n\le 500 ...
- COGS2356 【HZOI2015】有标号的DAG计数 IV
题面 题目描述 给定一正整数n,对n个点有标号的有向无环图进行计数. 这里加一个限制:此图必须是弱连通图. 输出答案mod 998244353的结果 输入格式 一个正整数n. 输出格式 一个数,表示答 ...
- COGS2355 【HZOI2015】 有标号的DAG计数 II
题面 题目描述 给定一正整数n,对n个点有标号的有向无环图(可以不连通)进行计数,输出答案mod 998244353的结果 输入格式 一个正整数n 输出格式 一个数,表示答案 样例输入 3 样例输出 ...
- COGS 2353 2355 2356 2358 有标号的DAG计数
不用连通 枚举入度为0的一层 卷积 发现有式子: 由$n^2-i^2-(n-i)^2=2*i*(n-i)$ 可得$2^{i*(n-i)}=\frac{{\sqrt 2}^{(n^2)}}{{\sqrt ...
- 有标号的DAG计数 III
Description 给定一正整数n,对n个点有标号的有向无环图进行计数,这里加一个限制:此图必须是弱连通图.输出答案 mod 10007 的结果. Solution 弱连通图即把边变成无向之后成为 ...
- 有标号的DAG计数 II
Description 给定一正整数n,对n个点有标号的有向无环图(可以不连通)进行计数,输出答案mod 998244353的结果 Solution 考虑 \(O(n^2)\) DP 枚举出度为 \( ...
随机推荐
- POLARDB 2.0 重磅升级,分别支持Oracle与PostgreSQL
点击订阅新品发布会! 新产品.新版本.新技术.新功能.价格调整,评论在下方,下期更新!关注更多内容,了解更多 最新发布 POLARDB 2.0 重磅升级 2019年6月19日15时,阿里云 POLAR ...
- @CSP模拟2019.10.16 - T3@ 垃圾分类
目录 @description@ @solution@ @accepted code@ @details@ @description@ 为了保护环境,p6pou建设了一个垃圾分类器. 垃圾分类器是一个 ...
- Python 官方文档:入门教程
https://pythoncaff.com/docs/tutorial/3.7.0 官方入门教程,从这里开始你的 Python 之旅,将长久维护 基础信息 翻译说明 关于本教程 已完成 正文 1. ...
- Fragment学习(二): 管理Fragment和Fragment通讯
一. 管理Fragment 首先,如果你想在Android3.0及以下版本使用Fragment,你必须引用android-support-v4.jar这个包 然后你写的activity不能再继承自Ac ...
- Codeforces Round #185 (Div. 1 + Div. 2)
A. Whose sentence is it? 模拟. B. Archer \[pro=\frac{a}{b}+(1-\frac{a}{b})(1-\frac{c}{d})\frac{a}{b}+( ...
- java final域
public final class ThreeStooges { /* * stooges是Set<String>类型的引用,final限定该引用成员属性stooges被赋初值后,就不能 ...
- Vue 语法的一些小问题
设置 sty行内样式 :style="{width:mapWidth,height:mapHeight}" This指向 axios 使用axios 的时候 ,在生命周期函数 ...
- Intellij Idea更换主题
<h1 class="title">Intellij Idea更换主题</h1> <!-- 作者区域 --> <div class=&qu ...
- redis常用指令总结以及功能介绍
第一部分 redis的常用指令 一.针对key的操作 1.1 del key [key .. ] , 删除指定的一个或者多个key;1.2 dump key ...
- HDU 5912 Fraction(模拟)
Problem Description Mr. Frog recently studied how to add two fractions up, and he came up with an ev ...