NLP进阶之(七)膨胀卷积神经网络
NLP进阶之(七)膨胀卷积神经网络
1. Dilated Convolutions 膨胀卷积神经网络
1.2 动态理解
1.2.2 转置卷积动画
1.2.3 理解
2. Dilated Convolutions 优点
3. 应用
理论来自Multi-scale context aggregation by dilated convolutions ICLR 2016
作者将代码贡献于github
针对语义分割问题 semantic segmentation,这里使用 dilated convolutions 得到multi-scale context 信息来提升分割效果。
1. Dilated Convolutions 膨胀卷积神经网络
dilated convolutions:
首先来看看膨胀卷积 dilated convolutions,
图(a):就是一个常规的3x3卷积,1-dilated convolution得到F1,F1的每个位置的卷积感受眼是3x3=9。
图(b):在F1的基础上,进行一个2-dilated convolution,注意它的点乘位置,不是相邻的3x3,得到了F2,F2的每个位置的 卷积感受眼是7x7=49。
图©:在F2的基础上,进行一个4-dilated convolution,得到了F3,F3的每个位置的卷积感受眼是15×15=225,注意这里dilated convolution的参数数量是相同的,都是 3x3=9。
从上图中可以看出,卷积核的参数个数保持不变,卷积感受眼的大小随着dilation rate参数的增加呈指数增长。
1.2 动态理解
N.B.: Blue maps are inputs, and cyan maps are outputs.
1.2.2 转置卷积动画
N.B.: Blue maps are inputs, and cyan maps are outputs.
1.2.3 理解
shape of input : [batch, in_height, in_width, in_channels]
shape of filter : [filter_height, filter_width, in_channels, out_channels]
with tf.variable_scope("idcnn" if not name else name):
#shape=[1*3*120*100]
shape=[1, self.filter_width, self.embedding_dim,
self.num_filter]
print(shape)
filter_weights = tf.get_variable(
"idcnn_filter",
shape=[1, self.filter_width, self.embedding_dim,
self.num_filter],
initializer=self.initializer)
layerInput = tf.nn.conv2d(model_inputs,
filter_weights,
# 上下都是移动一步
strides=[1, 1, 1, 1],
padding="SAME",
name="init_layer",use_cudnn_on_gpu=True)
self.layerInput_test=layerInput
finalOutFromLayers = []
totalWidthForLastDim = 0
# 第一次卷积结束后就放入膨胀卷积里面进行卷积
for j in range(self.repeat_times):
for i in range(len(self.layers)):
#1,1,2:1是步长,2就是中间插了一个孔
dilation = self.layers[i]['dilation']
isLast = True if i == (len(self.layers) - 1) else False
with tf.variable_scope("atrous-conv-layer-%d" % i,
reuse=True
if (reuse or j > 0) else False):
#w 卷积核的高度,卷积核的宽度,图像通道数,卷积核个数
w = tf.get_variable(
"filterW",
shape=[1, self.filter_width, self.num_filter,
self.num_filter],
initializer=tf.contrib.layers.xavier_initializer())
if j==1 and i==1:
self.w_test_1=w
if j==2 and i==1:
self.w_test_2=w
b = tf.get_variable("filterB", shape=[self.num_filter])
conv = tf.nn.atrous_conv2d(layerInput,
w,
rate=dilation,
padding="SAME")
self.conv_test=conv
conv = tf.nn.bias_add(conv, b)
conv = tf.nn.relu(conv)
if isLast:
finalOutFromLayers.append(conv)
totalWidthForLastDim += self.num_filter
layerInput = conv
finalOut = tf.concat(axis=3, values=finalOutFromLayers)
keepProb = 1.0 if reuse else 0.5
finalOut = tf.nn.dropout(finalOut, keepProb)
finalOut = tf.squeeze(finalOut, [1])
finalOut = tf.reshape(finalOut, [-1, totalWidthForLastDim])
self.cnn_output_width = totalWidthForLastDim
return finalOut
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
2. Dilated Convolutions 优点
3. 应用
扩张卷积在图像分割、语音合成、机器翻译、目标检测中都有应用。
---------------------
作者:Merlin17Crystal33
来源:CSDN
原文:https://blog.csdn.net/qq_35495233/article/details/86638098
版权声明:本文为博主原创文章,转载请附上博文链接!
NLP进阶之(七)膨胀卷积神经网络的更多相关文章
- SIGAI深度学习第七集 卷积神经网络1
讲授卷积神经网络核心思想.卷积层.池化层.全连接层.网络的训练.反向传播算法.随机梯度下降法.AdaGrad算法.RMSProp算法.AdaDelta算法.Adam算法.迁移学习和fine tune等 ...
- 验证码进阶(TensorFlow--基于卷积神经网络的验证码识别)
本人的第一个深度学习实战项目,参考了网络上诸多牛人的代码,在此谢过,因时间久已,不记出处,就不一一列出,罪过罪过. 我的数据集是我用脚本在网页上扒的,标签是用之前写的验证码识别方法打的.大概用了400 ...
- 卷积神经网络以及TextCNN
对于卷积神经网络的详细介绍和一些总结可以参考以下博文: https://www.cnblogs.com/pinard/p/6483207.html https://blog.csdn.net/guoy ...
- Python机器学习笔记:卷积神经网络最终笔记
这已经是我的第四篇博客学习卷积神经网络了.之前的文章分别是: 1,Keras深度学习之卷积神经网络(CNN),这是开始学习Keras,了解到CNN,其实不懂的还是有点多,当然第一次笔记主要是给自己心中 ...
- 斯坦福NLP课程 | 第11讲 - NLP中的卷积神经网络
作者:韩信子@ShowMeAI,路遥@ShowMeAI,奇异果@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/36 本文地址:http://www. ...
- 『TensorFlow』读书笔记_进阶卷积神经网络_分类cifar10_上
完整项目见:Github 完整项目中最终使用了ResNet进行分类,而卷积版本较本篇中结构为了提升训练效果也略有改动 本节主要介绍进阶的卷积神经网络设计相关,数据读入以及增强在下一节再与介绍 网络相关 ...
- 理解NLP中的卷积神经网络(CNN)
此篇文章是Denny Britz关于CNN在NLP中应用的理解,他本人也曾在Google Brain项目中参与多项关于NLP的项目. · 翻译不周到的地方请大家见谅. 阅读完本文大概需要7分钟左右的时 ...
- tensorflow学习笔记七----------卷积神经网络
卷积神经网络比神经网络稍微复杂一些,因为其多了一个卷积层(convolutional layer)和池化层(pooling layer). 使用mnist数据集,n个数据,每个数据的像素为28*28* ...
- 基于卷积神经网络CNN的电影推荐系统
本项目使用文本卷积神经网络,并使用MovieLens数据集完成电影推荐的任务. 推荐系统在日常的网络应用中无处不在,比如网上购物.网上买书.新闻app.社交网络.音乐网站.电影网站等等等等,有人的地方 ...
随机推荐
- Django多业务模块的写法
from django.shortcuts import render # Create your views here. from django.shortcuts import HttpRespo ...
- spring boot 使用POI导出数据到Excel表格
在spring boot 的项目经常碰到将数据导出到Excel表格的需求,而POI技术则对于java操作Excel表格提供了API,POI中对于多种类型的文档都提供了操作的接口,但是其对于Excel表 ...
- const、引用与指针
前提 我们忽略掉了相同类型是否可以赋值的情况(我到现在的学习里都还可以相互赋值),以及类型兼容的情况.只考虑const.&.*等修饰符带来的影响 类型兼容: 强制类型转换 基类与子类间的兼容 ...
- DirectX11笔记(八)--Direct3D渲染4--VERTEX SHADER
原文:DirectX11笔记(八)--Direct3D渲染4--VERTEX SHADER 版权声明:本文为博主原创文章,未经博主允许不得转载. https://blog.csdn.net/u0103 ...
- 使用nuxt.js官方脚手架构建koa2的es6编译问题
最近在学用nuxt集成koa2做vue后台,发现官方自带脚手架搭建的koa2使用的仍是es5语法,如果想用es6怎么办呢? 这是由于自带脚手架在构建koa2时默认的nodemon是没有使用babel编 ...
- QT获取主机名称
//获取主机名 QString localHost = QHostInfo::localHostName();
- (转) Hibernate持久化类与主键生成策略
http://blog.csdn.net/yerenyuan_pku/article/details/65462930 Hibernate持久化类 什么是持久化类呢?在Hibernate中持久化类的英 ...
- windows下 python中报错ImportError: No module named 'requests'
原因没有安装requests模块, 可以切换到python的安装目录找到 script文件夹 example: 进入cmd窗口切换到上面的目录直接运营下面两个命令中的一个 1. > Path\p ...
- Sum Root to Leaf Numbers深度优先计算路径和
Given a binary tree containing digits from 0-9 only, each root-to-leaf path could represent a number ...
- Hibernate→ 《Hibernate程序开发》教材大纲
Hibernate ORM 概览 Hibernate 简介 Hibernate 架构 Hibernate 环境 Hibernate 配置 Hibernate 会话 Hibernate 持久化类 Hib ...