1.5神经网络可视化显示(matplotlib)
神经网络训练+可视化显示
#添加隐层的神经网络结构+可视化显示
import tensorflow as tf def add_layer(inputs,in_size,out_size,activation_function=None):
#定义权重--随机生成inside和outsize的矩阵
Weights=tf.Variable(tf.random_normal([in_size,out_size]))
#不是矩阵,而是类似列表
biaes=tf.Variable(tf.zeros([1,out_size])+0.1)
Wx_plus_b=tf.matmul(inputs,Weights)+biaes
if activation_function is None:
outputs=Wx_plus_b
else:
outputs=activation_function(Wx_plus_b)
return outputs import numpy as np
x_data=np.linspace(-1,1,300)[:,np.newaxis] #300行数据
noise=np.random.normal(0,0.05,x_data.shape)
y_data=np.square(x_data)-0.5+noise
#None指定sample个数,这里不限定--输出属性为1
xs=tf.placeholder(tf.float32,[None,1]) #这里需要指定tf.float32,
ys=tf.placeholder(tf.float32,[None,1]) #建造第一层layer
#输入层(1)
l1=add_layer(xs,1,10,activation_function=tf.nn.relu)
#隐层(10)
prediction=add_layer(l1,10,1,activation_function=None)
#输出层(1)
#预测prediction
loss=tf.reduce_mean(tf.reduce_sum(tf.square(ys-prediction),
reduction_indices=[1])) #平方误差
train_step=tf.train.GradientDescentOptimizer(0.1).minimize(loss) init=tf.initialize_all_variables()
sess=tf.Session()
#直到执行run才执行上述操作
sess.run(init) import matplotlib.pyplot as plt
fig=plt.figure()
ax=fig.add_subplot(111)
ax.scatter(x_data,y_data)
plt.ion() #图像会连续显示
#plt.show()不会终止整个函数。在2.x时候使用plt.show(block=False)
plt.show() for i in range(1000):
#这里假定指定所有的x_data来指定运算结果
sess.run(train_step,feed_dict={xs:x_data,ys:y_data})
if i%50:
# print (sess.run(loss,feed_dict={xs:x_data,ys:y_data}))
try:
#忽略第一次的错误
ax.lines.remove(lines[0]) #在图片中去掉lines的第1条线段,不然线会混乱
except Exception:
prediction_value=sess.run(prediction,feed_dict={xs:x_data})
lines=ax.plot(x_data,prediction_value,'r-',lw=5)
# ax.lines.remove(lines[0]) 移动上上面,先移除第一条线
plt.pause(0.2) #每次暂停0.2s
显示:

1.5神经网络可视化显示(matplotlib)的更多相关文章
- 高效使用 Python 可视化工具 Matplotlib
Matplotlib是Python中最常用的可视化工具之一,可以非常方便地创建海量类型的2D图表和一些基本的3D图表.本文主要介绍了在学习Matplotlib时面临的一些挑战,为什么要使用Matplo ...
- Python数据可视化——使用Matplotlib创建散点图
Python数据可视化——使用Matplotlib创建散点图 2017-12-27 作者:淡水化合物 Matplotlib简述: Matplotlib是一个用于创建出高质量图表的桌面绘图包(主要是2D ...
- Python可视化库-Matplotlib使用总结
在做完数据分析后,有时候需要将分析结果一目了然地展示出来,此时便离不开Python可视化工具,Matplotlib是Python中的一个2D绘图工具,是另外一个绘图工具seaborn的基础包 先总结下 ...
- Python 可视化工具 Matplotlib
英文出处:Chris Moffitt. Matplotlib是Python中最常用的可视化工具之一,可以非常方便地创建海量类型的2D图表和一些基本的3D图表.本文主要介绍了在学习Matplotlib时 ...
- 学机器学习,不会数据分析怎么行——数据可视化分析(matplotlib)
前言 前面两篇文章介绍了 python 中两大模块 pandas 和 numpy 的一些基本使用方法,然而,仅仅会处理数据还是不够的,我们需要学会怎么分析,毫无疑问,利用图表对数据进行分析是最容易的, ...
- GeoHash原理和可视化显示
最近在做附近定位功能的产品,geohash是一个非常不错的实现方式.查询资料,发现阿里的这篇文章讲解的很好.但文中并没有给出geohash显示的工具.无奈,也没有查到类似的.只好自己简单显示一下,方便 ...
- 动态可视化 数据可视化之魅D3,Processing,pandas数据分析,科学计算包Numpy,可视化包Matplotlib,Matlab语言可视化的工作,Matlab没有指针和引用是个大问题
动态可视化 数据可视化之魅D3,Processing,pandas数据分析,科学计算包Numpy,可视化包Matplotlib,Matlab语言可视化的工作,Matlab没有指针和引用是个大问题 D3 ...
- Python的可视化包 – Matplotlib 2D图表(点图和线图,.柱状或饼状类型的图),3D图表(曲面图,散点图和柱状图)
Python的可视化包 – Matplotlib Matplotlib是Python中最常用的可视化工具之一,可以非常方便地创建海量类型地2D图表和一些基本的3D图表.Matplotlib最早是为了可 ...
- Distill详述「可微图像参数化」:神经网络可视化和风格迁移利器!
近日,期刊平台 Distill 发布了谷歌研究人员的一篇文章,介绍一个适用于神经网络可视化和风格迁移的强大工具:可微图像参数化.这篇文章从多个方面介绍了该工具. 图像分类神经网络拥有卓越的图像生成能力 ...
随机推荐
- Tomcat------如何配置域名和80端口
1.打开Tomcat的默认安装路径下的Service.xml文件 路径:C:\Program Files\Apache Software Foundation\Tomcat 8.0\conf\Serv ...
- ios开发之 -- NSString指定字体高亮显示
一个简单的小需求,就是在一个字符串里面,指定一部分字节高亮显示,代码如下: NSString *descStr = @"需要高亮显示的字符"; NSString *nickStr ...
- delphi 10 Seattle 第一个Android程序
delphi 10 Seattle 第一个Android程序 1.打开Delphi RAD Studio Seattle,如下图 2.选择black application 点击OK 3. ...
- Delphi2010中DataSnap技术
文章来源: https://blog.csdn.net/xieyunc/article/details/47865227?_t_t_t=0.3049736963513836 一.为DataSnap系统 ...
- Esper学习之十四:Pattern(一)
1. Pattern Atoms and Pattern operatorsPattern是通过原子事件和操作符组合在一起构成模板.原子事件有3类,操作符有4类,具体如下: 原子事件:1). 普通事件 ...
- Python汉字转换成拼音
最近在使用Python做项目时,需要将汉字转化成对应的拼音. 网上的一些包大多是python2.x的,使用下面这个包,支持python3.6 xpinyin 0.5.5 >>> fr ...
- Android 本地tomcat服务器接收处理手机上传的数据之案例演示
上一篇:Android 本地tomcat服务器接收处理手机上传的数据之环境搭建 本篇基于上一篇搭建的服务器端环境,具体介绍Android真机上传数据到tomcat服务器的交互过程 场景:A ...
- RAC迁移至单机考虑几大因素
数据库迁移几大因素 1. 停机时间 2. 源端,目标端 操作系统平台,版本,对应的数据库版本 3. 数据量 4. 外界因素,存储空间,网络等
- LeetCode 24 Swap Nodes in Pairs (交换相邻节点)
题目链接: https://leetcode.com/problems/swap-nodes-in-pairs/?tab=Description Problem: 交换相邻的两个节点 如上 ...
- spring boot 单元测试,如何使用profile
一.问题概述 spring boot项目.单元测试的时候,我发现,总是会使用application.properties的内容,而该文件里,一般是我的开发时候的配置. 比如上图中,dev是开发配置,p ...