https://www.luogu.org/problem/P3226

考虑构造矩阵

1 3 9 27......

2 6 18 54......

4 12 36 108......

......

发现在这个矩阵上一个合法的集合是一个满足选择的数字不相邻的集合,由于行数列数的大小都是log级别的,可以直接状压dp。

此外,不仅要以1位左上角做dp,还要分别以所有既不是2的倍数,也不是3的倍数的数字做dp。

把所有方案乘起来即可。

#include<iostream>
#include<cctype>
#include<cstdio>
#include<cstring>
#include<string>
#include<cmath>
#include<ctime>
#include<cstdlib>
#include<algorithm>
#define N 22
#define S 110000
#define eps 1e-7
#define inf 1e9+7
#define ll long long
using namespace std;
inline ll read()
{
char ch=0;
ll x=0,flag=1;
while(!isdigit(ch)){ch=getchar();if(ch=='-')flag=-1;}
while(isdigit(ch)){x=(x<<3)+(x<<1)+ch-'0';ch=getchar();}
return x*flag;
}
const ll mo=1000000001;
bool flag[S];
ll n,dp[N][S];
ll solve(ll k)
{
dp[0][0]=1;
ll x,a,b,last=0,ans=0;
for(x=k,a=0;x<=n;x*=2)a++;
for(ll i=1;i<=a;i++,k*=2)
{
for(x=k,b=0;x<=n;x*=3)b++;
for(ll s=0;s<(1<<b);s++)if(flag[s])
{
dp[i][s]=0;
for(ll p=0;p<(1<<last);p++)if(flag[p])
if(!(s&p))dp[i][s]=(dp[i][s]+dp[i-1][p])%mo;
}
last=b;
}
for(ll s=0;s<(1<<last);s++)ans=(ans+dp[a][s])%mo;
return ans;
}
int main()
{
n=read();
ll ans=1;
for(ll s=0;s<S;s++)
{
flag[s]=true;
for(ll i=0;i<=15;i++)
if(((1<<i)&s)&&(1<<(i+1)&s))
flag[s]=false;
}
for(ll i=1;i<=n;i++)
if(i%2&&i%3)ans=(ans*solve(i))%mo;
printf("%lld",ans);
return 0;
}

P3226 [HNOI2012]集合选数的更多相关文章

  1. luogu P3226 [HNOI2012]集合选数

    luogu 因为限制关系只和2和3有关,如果把数中2的因子和3的因子都除掉,那剩下的数不同的数是不会相互影响,所以每次考虑剩下的数一样的一类数,答案为每类数答案的乘积 如果选了一个数,那么2的因子多1 ...

  2. 洛谷$P3226\ [HNOI2012]$集合选数 状压$dp$

    正解:$dp$ 解题报告: 传送门$QwQ$ 考虑列一个横坐标为比值为2的等比数列,纵坐标为比值为3的等比数列的表格.发现每个数要选就等价于它的上下左右不能选. 于是就是个状压$dp$板子了$QwQ$ ...

  3. bzoj 2734: [HNOI2012]集合选数 状压DP

    2734: [HNOI2012]集合选数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 560  Solved: 321[Submit][Status ...

  4. BZOJ_2734_[HNOI2012]集合选数_构造+状压DP

    BZOJ_2734_[HNOI2012]集合选数_构造+状压DP 题意:<集合论与图论>这门课程有一道作业题,要求同学们求出{1, 2, 3, 4, 5}的所有满足以 下条件的子集:若 x ...

  5. 2734: [HNOI2012]集合选数

    2734: [HNOI2012]集合选数 链接 分析: 转化一下题意. 1 3 9 27... 2 6 18 54... 4 12 36 108... 8 24 72 216... ... 写成这样的 ...

  6. [HNOI2012]集合选数 --- 状压DP

    [HNOI2012]集合选数 题目描述 <集合论与图论>这门课程有一道作业题,要求同学们求出\({1,2,3,4,5}\)的所有满足以 下条件的子集:若 x 在该子集中,则 2x 和 3x ...

  7. 2734: [HNOI2012]集合选数 - BZOJ

    Description <集合论与图论>这门课程有一道作业题,要求同学们求出{1, 2, 3, 4, 5}的所有满足以 下条件的子集:若 x 在该子集中,则 2x 和 3x 不能在该子集中 ...

  8. bzoj 2734: [HNOI2012]集合选数

    题目描述 <集合论与图论>这门课程有一道作业题,要求同学们求出{1, 2, 3, 4, 5}的所有满足以 下条件的子集:若 x 在该子集中,则 2x 和 3x 不能在该子集中. 同学们不喜 ...

  9. 【刷题】BZOJ 2734 [HNOI2012]集合选数

    Description <集合论与图论>这门课程有一道作业题,要求同学们求出{1, 2, 3, 4, 5}的所有满足以 下条件的子集:若 x 在该子集中,则 2x 和 3x 不能在该子集中 ...

随机推荐

  1. php json_decode() 如果想要强制生成PHP关联数组,json_decode()需要加一个参数true

    php json_decode()该函数用于将json文本转换为相应的PHP数据结构.下面是一个例子:$json = '{"foo": 12345}';$obj = json_de ...

  2. 计算概论(A)/基础编程练习2(8题)/4:骑车与走路

    #include<stdio.h> int main() { // 待处理的数据数量n ; scanf("%d", &n); float meters[n]; ...

  3. jpeg exif

    公司项目需要在jpeg图片里面添加exif信息,同事完成了这部分代码:但是有些手机兼容性有问题: libexif 地址:http://libexif.sourceforge.net/ 注意相关资料来之 ...

  4. Php cli模式下执行报错/usr/bin/php: /usr/local/lib/libxml2.so.2: no version information available (required by /usr/bin/php)

    centos下php cli模式报错 /usr/bin/php: /usr/local/lib/libxml2.so.2: no version information available (requ ...

  5. linux 挂载硬盘 + 对硬盘 分区

    parted命令可以划分单个分区大于2T的GPT格式的分区,也可以划分普通的MBR分区 fdisk命令对于大于2T的分区无法划分,所以用fdisk无法看到parted划分的GPT格式的分区 1. 用 ...

  6. MySQL新建用户保存的时报错:The MySQL server is running with the --skip-grant-tables option so it cannot execute this statement

    又是这种错, 以前没遇过, 没办法, 直接google. 下面看解决办法: 登录mysql, 当然了如果您登录不上(密码错误情况), 直接扔这个属性进去my.cnf配置文件skip-grant-tab ...

  7. weka中算法说明[转]

    1) 数据输入和输出WOW():查看Weka函数的参数.Weka_control():设置Weka函数的参数.read.arff():读Weka Attribute-Relation File For ...

  8. openwrt的编译方法

    1.获取最新包 ./scripts/feeds update -a 2.安装包 ./scripts/feeds install -a 3.配置 make menuconfig 4.编译 make -j ...

  9. 1-20 RHEL7的启动原理和服务控制

    大纲: RHEL7启动原理 RHEL7服务启动配置 网络概述 发布内网服务器 ############################################################ ...

  10. 51nod 1242 斐波那契数列的第N项

    之前一直没敢做矩阵一类的题目 其实还好吧 推荐看一下 : http://www.cnblogs.com/SYCstudio/p/7211050.html 但是后面的斐波那契 推导不是很懂  前面讲的挺 ...