P3226 [HNOI2012]集合选数
https://www.luogu.org/problem/P3226
考虑构造矩阵
1 3 9 27......
2 6 18 54......
4 12 36 108......
......
发现在这个矩阵上一个合法的集合是一个满足选择的数字不相邻的集合,由于行数列数的大小都是log级别的,可以直接状压dp。
此外,不仅要以1位左上角做dp,还要分别以所有既不是2的倍数,也不是3的倍数的数字做dp。
把所有方案乘起来即可。
#include<iostream>
#include<cctype>
#include<cstdio>
#include<cstring>
#include<string>
#include<cmath>
#include<ctime>
#include<cstdlib>
#include<algorithm>
#define N 22
#define S 110000
#define eps 1e-7
#define inf 1e9+7
#define ll long long
using namespace std;
inline ll read()
{
char ch=0;
ll x=0,flag=1;
while(!isdigit(ch)){ch=getchar();if(ch=='-')flag=-1;}
while(isdigit(ch)){x=(x<<3)+(x<<1)+ch-'0';ch=getchar();}
return x*flag;
}
const ll mo=1000000001;
bool flag[S];
ll n,dp[N][S];
ll solve(ll k)
{
dp[0][0]=1;
ll x,a,b,last=0,ans=0;
for(x=k,a=0;x<=n;x*=2)a++;
for(ll i=1;i<=a;i++,k*=2)
{
for(x=k,b=0;x<=n;x*=3)b++;
for(ll s=0;s<(1<<b);s++)if(flag[s])
{
dp[i][s]=0;
for(ll p=0;p<(1<<last);p++)if(flag[p])
if(!(s&p))dp[i][s]=(dp[i][s]+dp[i-1][p])%mo;
}
last=b;
}
for(ll s=0;s<(1<<last);s++)ans=(ans+dp[a][s])%mo;
return ans;
}
int main()
{
n=read();
ll ans=1;
for(ll s=0;s<S;s++)
{
flag[s]=true;
for(ll i=0;i<=15;i++)
if(((1<<i)&s)&&(1<<(i+1)&s))
flag[s]=false;
}
for(ll i=1;i<=n;i++)
if(i%2&&i%3)ans=(ans*solve(i))%mo;
printf("%lld",ans);
return 0;
}
P3226 [HNOI2012]集合选数的更多相关文章
- luogu P3226 [HNOI2012]集合选数
luogu 因为限制关系只和2和3有关,如果把数中2的因子和3的因子都除掉,那剩下的数不同的数是不会相互影响,所以每次考虑剩下的数一样的一类数,答案为每类数答案的乘积 如果选了一个数,那么2的因子多1 ...
- 洛谷$P3226\ [HNOI2012]$集合选数 状压$dp$
正解:$dp$ 解题报告: 传送门$QwQ$ 考虑列一个横坐标为比值为2的等比数列,纵坐标为比值为3的等比数列的表格.发现每个数要选就等价于它的上下左右不能选. 于是就是个状压$dp$板子了$QwQ$ ...
- bzoj 2734: [HNOI2012]集合选数 状压DP
2734: [HNOI2012]集合选数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 560 Solved: 321[Submit][Status ...
- BZOJ_2734_[HNOI2012]集合选数_构造+状压DP
BZOJ_2734_[HNOI2012]集合选数_构造+状压DP 题意:<集合论与图论>这门课程有一道作业题,要求同学们求出{1, 2, 3, 4, 5}的所有满足以 下条件的子集:若 x ...
- 2734: [HNOI2012]集合选数
2734: [HNOI2012]集合选数 链接 分析: 转化一下题意. 1 3 9 27... 2 6 18 54... 4 12 36 108... 8 24 72 216... ... 写成这样的 ...
- [HNOI2012]集合选数 --- 状压DP
[HNOI2012]集合选数 题目描述 <集合论与图论>这门课程有一道作业题,要求同学们求出\({1,2,3,4,5}\)的所有满足以 下条件的子集:若 x 在该子集中,则 2x 和 3x ...
- 2734: [HNOI2012]集合选数 - BZOJ
Description <集合论与图论>这门课程有一道作业题,要求同学们求出{1, 2, 3, 4, 5}的所有满足以 下条件的子集:若 x 在该子集中,则 2x 和 3x 不能在该子集中 ...
- bzoj 2734: [HNOI2012]集合选数
题目描述 <集合论与图论>这门课程有一道作业题,要求同学们求出{1, 2, 3, 4, 5}的所有满足以 下条件的子集:若 x 在该子集中,则 2x 和 3x 不能在该子集中. 同学们不喜 ...
- 【刷题】BZOJ 2734 [HNOI2012]集合选数
Description <集合论与图论>这门课程有一道作业题,要求同学们求出{1, 2, 3, 4, 5}的所有满足以 下条件的子集:若 x 在该子集中,则 2x 和 3x 不能在该子集中 ...
随机推荐
- python中的对象(三)
一.python对象 python使用对象模型来存储数据.构造任何类型的值都是一个对象. 所有python对象都拥有三个特性:身份.类型.值 身份:每个对象都有一个唯一的身份标识自己,任何对象的身份可 ...
- php 截取字符串第一个字符,截取掉字符串最后一个字符的方法
php 截取字符串第一个字符,php截取掉字符串最后一个字符的方法: $frist = substr( $c_url, 0, 1 ); $delete_last = substr(base_url() ...
- Python3 判断文件和文件夹是否存在、创建文件夹
Python3 判断文件和文件夹是否存在.创建文件夹 python中对文件.文件夹的操作需要涉及到os模块和shutil模块. 创建文件: 1) os.mknod(“test.txt”) 创建空文件 ...
- Hive-复制表
非分区表复制 复制一张非分区表,使用CREATE TABLE IF NOT EXISTS AS SELECT * FROM tb_name;只复制表结构,CREATE TABLE IF NOT EXI ...
- 20145318《网络对抗》MSF基础应用
20145318 <网络对抗> MSF基础应用 实验内容 掌握metasploit的基本应用方式,掌握常用的三种攻击方式的思路.具体需要完成(1)一个主动攻击,如ms08_067;(2)一 ...
- tensorflow 生成随机数 tf.random_normal 和 tf.random_uniform 和 tf.truncated_normal 和 tf.random_shuffle
____tz_zs tf.random_normal 从正态分布中输出随机值. . <span style="font-size:16px;">random_norma ...
- Python3基础 if else 格式 输入一个整数并判断是8吗
Python : 3.7.0 OS : Ubuntu 18.04.1 LTS IDE : PyCharm 2018.2.4 Conda ...
- http://www.360doc.com/content/18/0406/16/15102180_743316618.shtml
http://www.360doc.com/content/18/0406/16/15102180_743316618.shtml
- P3870 [TJOI2009]开关
思路 重题 代码 #include <iostream> #include <vector> #include <cstdio> #include <cstr ...
- js 注意点
1.var // 反例 myname = "global"; // 全局变量 function func() { alert(myname); // "undefined ...