https://www.luogu.org/problem/P3226

考虑构造矩阵

1 3 9 27......

2 6 18 54......

4 12 36 108......

......

发现在这个矩阵上一个合法的集合是一个满足选择的数字不相邻的集合,由于行数列数的大小都是log级别的,可以直接状压dp。

此外,不仅要以1位左上角做dp,还要分别以所有既不是2的倍数,也不是3的倍数的数字做dp。

把所有方案乘起来即可。

#include<iostream>
#include<cctype>
#include<cstdio>
#include<cstring>
#include<string>
#include<cmath>
#include<ctime>
#include<cstdlib>
#include<algorithm>
#define N 22
#define S 110000
#define eps 1e-7
#define inf 1e9+7
#define ll long long
using namespace std;
inline ll read()
{
char ch=0;
ll x=0,flag=1;
while(!isdigit(ch)){ch=getchar();if(ch=='-')flag=-1;}
while(isdigit(ch)){x=(x<<3)+(x<<1)+ch-'0';ch=getchar();}
return x*flag;
}
const ll mo=1000000001;
bool flag[S];
ll n,dp[N][S];
ll solve(ll k)
{
dp[0][0]=1;
ll x,a,b,last=0,ans=0;
for(x=k,a=0;x<=n;x*=2)a++;
for(ll i=1;i<=a;i++,k*=2)
{
for(x=k,b=0;x<=n;x*=3)b++;
for(ll s=0;s<(1<<b);s++)if(flag[s])
{
dp[i][s]=0;
for(ll p=0;p<(1<<last);p++)if(flag[p])
if(!(s&p))dp[i][s]=(dp[i][s]+dp[i-1][p])%mo;
}
last=b;
}
for(ll s=0;s<(1<<last);s++)ans=(ans+dp[a][s])%mo;
return ans;
}
int main()
{
n=read();
ll ans=1;
for(ll s=0;s<S;s++)
{
flag[s]=true;
for(ll i=0;i<=15;i++)
if(((1<<i)&s)&&(1<<(i+1)&s))
flag[s]=false;
}
for(ll i=1;i<=n;i++)
if(i%2&&i%3)ans=(ans*solve(i))%mo;
printf("%lld",ans);
return 0;
}

P3226 [HNOI2012]集合选数的更多相关文章

  1. luogu P3226 [HNOI2012]集合选数

    luogu 因为限制关系只和2和3有关,如果把数中2的因子和3的因子都除掉,那剩下的数不同的数是不会相互影响,所以每次考虑剩下的数一样的一类数,答案为每类数答案的乘积 如果选了一个数,那么2的因子多1 ...

  2. 洛谷$P3226\ [HNOI2012]$集合选数 状压$dp$

    正解:$dp$ 解题报告: 传送门$QwQ$ 考虑列一个横坐标为比值为2的等比数列,纵坐标为比值为3的等比数列的表格.发现每个数要选就等价于它的上下左右不能选. 于是就是个状压$dp$板子了$QwQ$ ...

  3. bzoj 2734: [HNOI2012]集合选数 状压DP

    2734: [HNOI2012]集合选数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 560  Solved: 321[Submit][Status ...

  4. BZOJ_2734_[HNOI2012]集合选数_构造+状压DP

    BZOJ_2734_[HNOI2012]集合选数_构造+状压DP 题意:<集合论与图论>这门课程有一道作业题,要求同学们求出{1, 2, 3, 4, 5}的所有满足以 下条件的子集:若 x ...

  5. 2734: [HNOI2012]集合选数

    2734: [HNOI2012]集合选数 链接 分析: 转化一下题意. 1 3 9 27... 2 6 18 54... 4 12 36 108... 8 24 72 216... ... 写成这样的 ...

  6. [HNOI2012]集合选数 --- 状压DP

    [HNOI2012]集合选数 题目描述 <集合论与图论>这门课程有一道作业题,要求同学们求出\({1,2,3,4,5}\)的所有满足以 下条件的子集:若 x 在该子集中,则 2x 和 3x ...

  7. 2734: [HNOI2012]集合选数 - BZOJ

    Description <集合论与图论>这门课程有一道作业题,要求同学们求出{1, 2, 3, 4, 5}的所有满足以 下条件的子集:若 x 在该子集中,则 2x 和 3x 不能在该子集中 ...

  8. bzoj 2734: [HNOI2012]集合选数

    题目描述 <集合论与图论>这门课程有一道作业题,要求同学们求出{1, 2, 3, 4, 5}的所有满足以 下条件的子集:若 x 在该子集中,则 2x 和 3x 不能在该子集中. 同学们不喜 ...

  9. 【刷题】BZOJ 2734 [HNOI2012]集合选数

    Description <集合论与图论>这门课程有一道作业题,要求同学们求出{1, 2, 3, 4, 5}的所有满足以 下条件的子集:若 x 在该子集中,则 2x 和 3x 不能在该子集中 ...

随机推荐

  1. DOS操作系统的历史

    昨日(7月27日),微软公司的DOS操作系统迎来了30岁生日. DOS是历史上一个划时代的产品,标识着PC(个人电脑)的崛起和普及,对计算机行业影响深远. 只有了解DOS的历史,才能理解今天的计算机工 ...

  2. linux查看是否有某个运行的进程命令

    linux查看是否有某个运行的进程命令:例如,查询是否包含 “my_post” 关键字的进程 ps aux | grep my_post ps aux | grep  my_post | grep - ...

  3. jquery中的load方法加载页面无法缓存问题

    在A页面中调用JQuery中的load方法,加载另一个B页面,B页面中的样式文件和JS文件无法从浏览器缓存中获取,每次都是实时获取.这是因为B页面的HTML经load方法处理后,会为每个样式和JS文件 ...

  4. 为什么采用4~20mA的电流来传输模拟量?(转)

    源: 为什么采用4~20mA的电流来传输模拟量?

  5. Python Web学习笔记之socket编程

    Python 提供了两个基本的 socket 模块. 第一个是 Socket,它提供了标准的 BSD Sockets API. 第二个是 SocketServer, 它提供了服务器中心类,可以简化网络 ...

  6. 编译时错误之 error C2338: tuple_element index out of bounds

    part 1 编译器 vs2015 VC++. 完整的错误信息粘贴如下: d:\program files (x86)\microsoft visual studio 14.0\vc\include\ ...

  7. 利用脚本kill掉进程, 语法:运行脚本+进程名

    下面附上脚本, 权限需要附X执行 #!/bin/sh #pid kill thread for chenglee #if fileformat=dos, update fileformat=unix ...

  8. 20145331魏澍琛《网络对抗》逆向及Bof基础

    20145331魏澍琛<网络对抗>逆向及Bof基础 实践目标 本次实践的对象是一个名为pwn1的linux可执行文件. 该程序正常执行流程是:main调用foo函数,foo函数会简单回显任 ...

  9. CSAPP 第三章 读书笔记

    程序的机器级表示 AT&T与Intel格式的汇编代码 我们的表述是ATT(根据"AT&T"命名的, AT&T是运营贝尔实验室多年的公 司)格式的汇编代码,这 ...

  10. Bootstrap 使用教程 与jQuery的Ajax方法

    jQuery.ajax(url,[settings]) 更加详细的内容参考    jQuery API 中文在线手册 概述 通过 HTTP 请求加载远程数据. jQuery 底层 AJAX 实现.简单 ...