https://www.luogu.org/problem/P3226

考虑构造矩阵

1 3 9 27......

2 6 18 54......

4 12 36 108......

......

发现在这个矩阵上一个合法的集合是一个满足选择的数字不相邻的集合,由于行数列数的大小都是log级别的,可以直接状压dp。

此外,不仅要以1位左上角做dp,还要分别以所有既不是2的倍数,也不是3的倍数的数字做dp。

把所有方案乘起来即可。

#include<iostream>
#include<cctype>
#include<cstdio>
#include<cstring>
#include<string>
#include<cmath>
#include<ctime>
#include<cstdlib>
#include<algorithm>
#define N 22
#define S 110000
#define eps 1e-7
#define inf 1e9+7
#define ll long long
using namespace std;
inline ll read()
{
char ch=0;
ll x=0,flag=1;
while(!isdigit(ch)){ch=getchar();if(ch=='-')flag=-1;}
while(isdigit(ch)){x=(x<<3)+(x<<1)+ch-'0';ch=getchar();}
return x*flag;
}
const ll mo=1000000001;
bool flag[S];
ll n,dp[N][S];
ll solve(ll k)
{
dp[0][0]=1;
ll x,a,b,last=0,ans=0;
for(x=k,a=0;x<=n;x*=2)a++;
for(ll i=1;i<=a;i++,k*=2)
{
for(x=k,b=0;x<=n;x*=3)b++;
for(ll s=0;s<(1<<b);s++)if(flag[s])
{
dp[i][s]=0;
for(ll p=0;p<(1<<last);p++)if(flag[p])
if(!(s&p))dp[i][s]=(dp[i][s]+dp[i-1][p])%mo;
}
last=b;
}
for(ll s=0;s<(1<<last);s++)ans=(ans+dp[a][s])%mo;
return ans;
}
int main()
{
n=read();
ll ans=1;
for(ll s=0;s<S;s++)
{
flag[s]=true;
for(ll i=0;i<=15;i++)
if(((1<<i)&s)&&(1<<(i+1)&s))
flag[s]=false;
}
for(ll i=1;i<=n;i++)
if(i%2&&i%3)ans=(ans*solve(i))%mo;
printf("%lld",ans);
return 0;
}

P3226 [HNOI2012]集合选数的更多相关文章

  1. luogu P3226 [HNOI2012]集合选数

    luogu 因为限制关系只和2和3有关,如果把数中2的因子和3的因子都除掉,那剩下的数不同的数是不会相互影响,所以每次考虑剩下的数一样的一类数,答案为每类数答案的乘积 如果选了一个数,那么2的因子多1 ...

  2. 洛谷$P3226\ [HNOI2012]$集合选数 状压$dp$

    正解:$dp$ 解题报告: 传送门$QwQ$ 考虑列一个横坐标为比值为2的等比数列,纵坐标为比值为3的等比数列的表格.发现每个数要选就等价于它的上下左右不能选. 于是就是个状压$dp$板子了$QwQ$ ...

  3. bzoj 2734: [HNOI2012]集合选数 状压DP

    2734: [HNOI2012]集合选数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 560  Solved: 321[Submit][Status ...

  4. BZOJ_2734_[HNOI2012]集合选数_构造+状压DP

    BZOJ_2734_[HNOI2012]集合选数_构造+状压DP 题意:<集合论与图论>这门课程有一道作业题,要求同学们求出{1, 2, 3, 4, 5}的所有满足以 下条件的子集:若 x ...

  5. 2734: [HNOI2012]集合选数

    2734: [HNOI2012]集合选数 链接 分析: 转化一下题意. 1 3 9 27... 2 6 18 54... 4 12 36 108... 8 24 72 216... ... 写成这样的 ...

  6. [HNOI2012]集合选数 --- 状压DP

    [HNOI2012]集合选数 题目描述 <集合论与图论>这门课程有一道作业题,要求同学们求出\({1,2,3,4,5}\)的所有满足以 下条件的子集:若 x 在该子集中,则 2x 和 3x ...

  7. 2734: [HNOI2012]集合选数 - BZOJ

    Description <集合论与图论>这门课程有一道作业题,要求同学们求出{1, 2, 3, 4, 5}的所有满足以 下条件的子集:若 x 在该子集中,则 2x 和 3x 不能在该子集中 ...

  8. bzoj 2734: [HNOI2012]集合选数

    题目描述 <集合论与图论>这门课程有一道作业题,要求同学们求出{1, 2, 3, 4, 5}的所有满足以 下条件的子集:若 x 在该子集中,则 2x 和 3x 不能在该子集中. 同学们不喜 ...

  9. 【刷题】BZOJ 2734 [HNOI2012]集合选数

    Description <集合论与图论>这门课程有一道作业题,要求同学们求出{1, 2, 3, 4, 5}的所有满足以 下条件的子集:若 x 在该子集中,则 2x 和 3x 不能在该子集中 ...

随机推荐

  1. OLAP引擎——Kylin介绍(很有用)

    转:http://blog.csdn.net/yu616568/article/details/48103415 Kylin是ebay开发的一套OLAP系统,与Mondrian不同的是,它是一个MOL ...

  2. linux常用命令:gzip 命令

    减 少文件大小有两个明显的好处,一是可以减少存储空间,二是通过网络传输文件时,可以减少传输的时间.gzip是在Linux系统中经常使用的一个对文件进 行压缩和解压缩的命令,既方便又好用.gzip不仅可 ...

  3. oracle中使用函数控制过程是否执行(结合job使用)

    oracle中使用函数控制过程是否执行(结合job使用时候,循环时间不好写的时候,可以此种方法比较方便) CREATE OR REPLACE FUNCTION wsbs_pk_date_validat ...

  4. nginx配置https并强制http自动跳转到https

    关于使用HTTPS/SSL的必要性,可以自行baidu,援引的说法,EFF(Electronic Frontier Foundation),全球过半流量采用https. https://www.osc ...

  5. 使用CloudFlare 的 PKI 工具集 cfssl 来生成 Certificate Authority (CA) 证书和秘钥文件

    要安装kubernetes最新版集群,https://github.com/opsnull/follow-me-install-kubernetes-cluster 这个文档必须要研习一下了. 以下实 ...

  6. sql注入学习心得与sqlmap使用心得

    做题是最好的老师 首先先来分享一下我用来练手的题目,实验吧中的简单的sql注入1,2,3 不得不说,sql注入真是一个神奇的东西,至少我以前看起来一点头绪都没有的题目能入手了 首先是简单的sql注入3 ...

  7. IDEA 插件-码云

    插件安装 最新插件版本: 2018.3.1.(2019-01-10 发布)注意:码云 IDEA 插件已由 gitosc 更名为 gitee.新版插件 gitee 菜单已经和 git 菜单合并 通过「插 ...

  8. 认识电脑的开机流程与主引导分区(MBR)

    在前篇随笔中,已经谈到了CMOS与BIOS,CMOS是记录各项硬件参数(包括系统时间.设备的I/O地址.CPU的电压和频率等)且嵌入到主板上面的存储器,BIOS是一个写入到主板上的韧体(韧体是写入到硬 ...

  9. Winform中使用折叠窗口

    使用此处的控件 http://www.codeproject.com/Articles/18401/XPanderControls 注意事项 使用之前需要先添加winform自带的toolStripC ...

  10. Educational Codeforces Round 57 (Rated for Div. 2)

    我好菜啊. A - Find Divisible 好像没什么可说的. #include<cstdio> #include<cstring> #include<algori ...