3.hadoop完全分布式搭建
3.Hadoop完全分布式搭建
1.完全分布式搭建
配置
#cd /soft/hadoop/etc/
#mv hadoop local
#cp -r local full
#ln -s full hadoop
#cd hadoop修改core-site.xml配置文件
#vim core-site.xml
[core-site.xml配置如下]
<?xml version="1.0"?>
<configuration>
<property>
<name>fs.defaultFS</name>
<value>hdfs://hadoop-1</value>
</property>
</configuration>
修改hdfs-site.xml配置文件
#vim hdfs-site.xml
[hdfs-site.xml配置如下]
<?xml version="1.0"?>
<configuration>
<property>
<name>dfs.replication</name>
<value>3</value>
</property>
<property>
<name>dfs.namenode.secondary.http-address</name>
<value>hadoop-2:50090</value>
</description>
</property>
</configuration>
修改mapred-site.xml配置文件
#cp mapred-site.xml.template mapred-site.xml
#vim mapred-site.xml
[mapred-site.xml配置如下]
<?xml version="1.0"?>
<configuration>
<property>
<name>mapreduce.framework.name</name>
<value>yarn</value>
</property>
</configuration>
修改yarn-site.xml配置文件
#vim yarn-site.xml
[yarn-site.xml配置如下]
<?xml version="1.0"?>
<configuration>
<property>
<name>yarn.resourcemanager.hostname</name>
<value>hadoop-1</value>
</property>
<property>
<name>yarn.nodemanager.aux-services</name>
<value>mapreduce_shuffle</value>
</property>
</configuration>
修改slaves配置文件
#vim slaves
[salves]
hadoop-2
hadoop-3
hadoop-4
hadoop-5
同步到其他节点
#scp -r /soft/hadoop/etc/full hadoop-2:/soft/hadoop/etc/
#scp -r /soft/hadoop/etc/full hadoop-3:/soft/hadoop/etc/
#scp -r /soft/hadoop/etc/full hadoop-4:/soft/hadoop/etc/
#scp -r /soft/hadoop/etc/full hadoop-5:/soft/hadoop/etc/
#ssh hadoop-2 ln -s /soft/hadoop/etc/full /soft/hadoop/etc/hadoop
#ssh hadoop-3 ln -s /soft/hadoop/etc/full /soft/hadoop/etc/hadoop
#ssh hadoop-4 ln -s /soft/hadoop/etc/full /soft/hadoop/etc/hadoop
#ssh hadoop-5 ln -s /soft/hadoop/etc/full /soft/hadoop/etc/hadoop
格式化hdfs分布式文件系统
#hadoop namenode -format
启动服务
[root@hadoop-1 hadoop]# start-all.sh
This script is Deprecated. Instead use start-dfs.sh and start-yarn.sh
Starting namenodes on [hadoop-1]
hadoop-1: starting namenode, logging to /soft/hadoop-2.7.3/logs/hadoop-root-namenode-hadoop-1.out
hadoop-2: starting datanode, logging to /soft/hadoop-2.7.3/logs/hadoop-root-datanode-hadoop-2.out
hadoop-3: starting datanode, logging to /soft/hadoop-2.7.3/logs/hadoop-root-datanode-hadoop-3.out
hadoop-4: starting datanode, logging to /soft/hadoop-2.7.3/logs/hadoop-root-datanode-hadoop-4.out
hadoop-5: starting datanode, logging to /soft/hadoop-2.7.3/logs/hadoop-root-datanode-hadoop-5.out
Starting secondary namenodes [hadoop-2]
hadoop-2: starting secondarynamenode, logging to /soft/hadoop-2.7.3/logs/hadoop-root-secondarynamenode-hadoop-2.out
starting yarn daemons
starting resourcemanager, logging to /soft/hadoop-2.7.3/logs/yarn-root-resourcemanager-hadoop-1.out
hadoop-3: starting nodemanager, logging to /soft/hadoop-2.7.3/logs/yarn-root-nodemanager-hadoop-3.out
hadoop-4: starting nodemanager, logging to /soft/hadoop-2.7.3/logs/yarn-root-nodemanager-hadoop-4.out
hadoop-2: starting nodemanager, logging to /soft/hadoop-2.7.3/logs/yarn-root-nodemanager-hadoop-2.out
hadoop-5: starting nodemanager, logging to /soft/hadoop-2.7.3/logs/yarn-root-nodemanager-hadoop-5.out
查看服务运行状态
[root@hadoop-1 hadoop]# jps
16358 ResourceManager
12807 NodeManager
16011 NameNode
16204 SecondaryNameNode
16623 Jps hadoop-5 | SUCCESS | rc=0 >>
16993 NodeManager
16884 DataNode
17205 Jps hadoop-1 | SUCCESS | rc=0 >>
28520 ResourceManager
28235 NameNode
29003 Jps hadoop-2 | SUCCESS | rc=0 >>
17780 Jps
17349 DataNode
17529 NodeManager
17453 SecondaryNameNode hadoop-4 | SUCCESS | rc=0 >>
17105 Jps
16875 NodeManager
16766 DataNode hadoop-3 | SUCCESS | rc=0 >>
16769 DataNode
17121 Jps
16878 NodeManager
登陆WEB查看


2. 完全分布式单词统计
通过hadoop自带的demo运行单词统计
#mkdir /input
#cd /input/
#echo "hello world" > file1.txt
#echo "hello world" > file2.txt
#echo "hello world" > file3.txt
#echo "hello hadoop" > file4.txt
#echo "hello hadoop" > file5.txt
#echo "hello mapreduce" > file6.txt
#echo "hello mapreduce" > file7.txt
#hadoop dfs -mkdir /input
#hdfs dfs -ls /
#hadoop fs -ls /
#hadoop fs -put /input/* /input
#hadoop fs -ls /input
开始统计
[root@hadoop-1 ~]# hadoop jar /soft/hadoop/share/hadoop/mapreduce/hadoop-mapreduce-examples-2.7.3.jar wordcount /input/ /output
17/05/14 23:01:07 INFO client.RMProxy: Connecting to ResourceManager at hadoop-1/10.31.133.19:8032
17/05/14 23:01:09 INFO input.FileInputFormat: Total input paths to process : 7
17/05/14 23:01:10 INFO mapreduce.JobSubmitter: number of splits:7
17/05/14 23:01:10 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1494773207391_0001
17/05/14 23:01:10 INFO impl.YarnClientImpl: Submitted application application_1494773207391_0001
17/05/14 23:01:11 INFO mapreduce.Job: The url to track the job: http://hadoop-1:8088/proxy/application_1494773207391_0001/
17/05/14 23:01:11 INFO mapreduce.Job: Running job: job_1494773207391_0001
17/05/14 23:01:23 INFO mapreduce.Job: Job job_1494773207391_0001 running in uber mode : false
17/05/14 23:01:23 INFO mapreduce.Job: map 0% reduce 0%
17/05/14 23:01:56 INFO mapreduce.Job: map 43% reduce 0%
17/05/14 23:01:57 INFO mapreduce.Job: map 100% reduce 0%
17/05/14 23:02:04 INFO mapreduce.Job: map 100% reduce 100%
17/05/14 23:02:05 INFO mapreduce.Job: Job job_1494773207391_0001 completed successfully
17/05/14 23:02:05 INFO mapreduce.Job: Counters: 50
File System Counters
FILE: Number of bytes read=184
FILE: Number of bytes written=949365
FILE: Number of read operations=0
FILE: Number of large read operations=0
FILE: Number of write operations=0
HDFS: Number of bytes read=801
HDFS: Number of bytes written=37
HDFS: Number of read operations=24
HDFS: Number of large read operations=0
HDFS: Number of write operations=2
Job Counters
Killed map tasks=1
Launched map tasks=7
Launched reduce tasks=1
Data-local map tasks=7
Total time spent by all maps in occupied slots (ms)=216289
Total time spent by all reduces in occupied slots (ms)=4827
Total time spent by all map tasks (ms)=216289
Total time spent by all reduce tasks (ms)=4827
Total vcore-milliseconds taken by all map tasks=216289
Total vcore-milliseconds taken by all reduce tasks=4827
Total megabyte-milliseconds taken by all map tasks=221479936
Total megabyte-milliseconds taken by all reduce tasks=4942848
Map-Reduce Framework
Map input records=7
Map output records=14
Map output bytes=150
Map output materialized bytes=220
Input split bytes=707
Combine input records=14
Combine output records=14
Reduce input groups=4
Reduce shuffle bytes=220
Reduce input records=14
Reduce output records=4
Spilled Records=28
Shuffled Maps =7
Failed Shuffles=0
Merged Map outputs=7
GC time elapsed (ms)=3616
CPU time spent (ms)=3970
Physical memory (bytes) snapshot=1528823808
Virtual memory (bytes) snapshot=16635846656
Total committed heap usage (bytes)=977825792
Shuffle Errors
BAD_ID=0
CONNECTION=0
IO_ERROR=0
WRONG_LENGTH=0
WRONG_MAP=0
WRONG_REDUCE=0
File Input Format Counters
Bytes Read=94
File Output Format Counters
Bytes Written=37查看
[root@hadoop-1 ~]# hadoop fs -ls /out/put
Found 2 items
-rw-r--r-- 3 root supergroup 0 2017-05-14 23:02 /out/put/_SUCCESS
-rw-r--r-- 3 root supergroup 37 2017-05-14 23:02 /out/put/part-r-00000
[root@hadoop-1 ~]# hadoop fs -cat /out/put/part-r-00000
hadoop 2
hello 7
mapreduce 2
world 3
[root@hadoop-1 ~]#
3.hadoop完全分布式搭建的更多相关文章
- hadoop完全分布式搭建HA(高可用)
2018年03月25日 16:25:26 D调的Stanley 阅读数:2725 标签: hadoop HAssh免密登录hdfs HA配置hadoop完全分布式搭建zookeeper 配置 更多 个 ...
- 超详细解说Hadoop伪分布式搭建--实战验证【转】
超详细解说Hadoop伪分布式搭建 原文http://www.tuicool.com/articles/NBvMv2原原文 http://wojiaobaoshanyinong.iteye.com/b ...
- Hadoop伪分布式搭建(一)
下面内容主要说明在Windows虚拟机上面,怎么搭建一个Hadoop伪分布式,并如何运行wordcount程序和网页查看HDFS文件系统. 1 相关软件下载和安装 APACH官网提供hadoop版本 ...
- Hadoop伪分布式搭建步骤
说明: 搭建环境是VMware10下用的是Linux CENTOS 32位,Hadoop:hadoop-2.4.1 JAVA :jdk7 32位:本文是本人在网络上收集的HADOOP系列视频所附带的 ...
- Hadoop 完全分布式搭建
搭建环境 https://www.cnblogs.com/YuanWeiBlogger/p/11456623.html 修改主机名------------------- 1./etc/hostname ...
- hadoop 伪分布式搭建
下载hadoop1.0.4版本,和jdk1.6版本或更高版本:1. 安装JDK,安装目录大家可以自定义,下面是我的安装目录: /usr/jdk1.6.0_22 配置环境变量: [root@hadoop ...
- Hadoop完全分布式搭建过程中遇到的问题小结
前一段时间,终于抽出了点时间,在自己本地机器上尝试搭建完全分布式Hadoop集群环境,也是借助网络上虾皮的Hadoop开发指南系列书籍一步步搭建起来的,在这里仅代表hadoop初学者向虾皮表示衷心的感 ...
- Hadoop完全分布式搭建流程
centos7 搭建完全分布式 Hadoop 环境 SSR 前言 本次教程是以先创建 四台虚拟机 为基础,再配置好一台虚拟机的情况下,直接复制文件到另外的虚拟机中(这样做大大简化了安装流程) 且本次 ...
- Hadoop伪分布式搭建CentOS
所需软件及版本: jdk-7u80-linux-x64.tar.gz hadoop-2.6.0.tar.gz 1.安装JDK Hadoop 在需在JDK下运行,注意JDK最好使用Oracle的否则可能 ...
随机推荐
- 20181030noip模拟赛T1
YY的矩阵 YY有一个大矩阵(N*M), 矩阵的每个格子里都有一个整数权值W[i,j](1<=i<=M,1<=j<=N) 对于这个矩阵YY会有P次询问,每次询问这个大矩阵的一个 ...
- mysql集群压测
mysql压测 mysql自带就有一个叫mysqlslap的压力测试工具,通过模拟多个并发客户端访问MySQL来执行压力测试,并且能很好的对比多个存储引擎在相同环境下的并发压力性能差别.通过mysql ...
- mysql主从延迟复制
需求描述 正常情况下我们是不会有刻意延迟从库的需求的,因为正常的线上业务自然是延迟越低越好.但是针对测试场景,业务上偶尔需要测试延迟场景下业务是否能正常运行. 解决方案 针对这种场景mysql有一个叫 ...
- Spring Boot 微信-验证服务器有效性【转】
转:https://blog.csdn.net/jeikerxiao/article/details/68064145 概述 接入微信公众平台开发,开发者需要按照如下步骤完成: 在自己服务器上,开发验 ...
- Python字符串必记函数
Python字符串函数数不胜数,想要记完所有几乎不可能,下列几个是极为重要的一些函数,属于必记函数. 一.join 功能: 将字符串.元组.列表中的元素以指定的字符(分隔符)连接生成一个新的字符串 语 ...
- URL参数获取/转码
JS中对URL进行转码与解码 1.escape 和 unescape escape()不能直接用于URL编码,它的真正作用是返回一个字符的Unicode编码值. 采用unicode字符集对指定的字符串 ...
- 【saltstack 集中化管理】
Master(监控端): Minion(被监控端) 监控: /etc/master: #interface:监控端地址 #自动接受被监控端证书 #saltstack文件根目录位置 #启动监控 被监控: ...
- PHP 获取客户端 IP 地址
先来了解一个变量的含义: $_SERVER['REMOTE_ADDR']:浏览当前页面的用户计算机的ip地址 $_SERVER['HTTP_CLIENT_IP']:客户端的ip $_SERVER['H ...
- Java学习笔记二十八:Java中的接口
Java中的接口 一:Java的接口: 接口(英文:Interface),在JAVA编程语言中是一个抽象类型,是抽象方法的集合,接口通常以interface来声明.一个类通过继承接口的方式,从而来继承 ...
- Zabbix 3.4.11版本 自定义监控项
一.实验思路过程 创建项目.触发器.图形,验证监控效果: Template OS Linux 模板基本涵盖了所有系统层面的监控,包括了我们最关注的 几项:ping.load.cpu 使用率.memor ...