ACM3018欧拉回路
欧拉回路
欧拉回路:图G,若存在一条路,经过G中每条边有且仅有一次,称这条路为欧拉路,如果存在一条回路经过G每条边有且仅有一次,
称这条回路为欧拉回路。具有欧拉回路的图成为欧拉图。
判断欧拉路是否存在的方法
有向图:图连通,有一个顶点出度大入度1,有一个顶点入度大出度1,其余都是出度=入度。
无向图:图连通,只有两个顶点是奇数度,其余都是偶数度的。
判断欧拉回路是否存在的方法
有向图:图连通,所有的顶点出度=入度。
无向图:图连通,所有顶点都是偶数度。
程序实现一般是如下过程:
1.利用并查集判断图是否连通,即判断可以作为起点的点的个数,如果大于1,说明不连通。
2.根据出度入度个数,判断是否满足要求。
3.利用dfs输出路径。
Notice:并查集使用中连接点时必须判断两点是否不在一个集合,不然可能会造成STACK_OVERFLOW的错误,下面做的这个就是血淋淋的例子啊!
#include<iostream>
using namespace std;
int n,m,cnt;
int *p,*degree,*odd,*vis,*record;
void init(int g)
{
p=new int[g+];
degree=new int[g+];
odd=new int[g+];
vis=new int[g+];
record=new int[g+];
cnt=;
for(int i=;i<=g;i++)
{
p[i]=-;
degree[i]=;
odd[i]=;
vis[i]=;
}
}
void destroy()
{
delete []p;
delete []degree;
delete []odd;
delete []vis;
delete []record;
}
int find(int x)
{
if(p[x]<)return x;
return p[x]=find(p[x]);
}
void Union(int a,int b)
{
int fa=find(a);
int fb=find(b);
if(fa==fb)return;//这一步判断很重要,在这里错了好多次,其他地方没错;
int da=p[fa];
int db=p[fb];
if(da>db)
{
p[fa]=fb;
p[fb]+=da;
}
else
{
p[fb]=fa;
p[fa]+=db;
}
}
int main()
{
int a,b;
while(scanf("%d %d",&n,&m)==)
{
init(n);
for(int i=;i<=m;i++)
{
scanf("%d %d",&a,&b);
degree[a]++;
degree[b]++;
Union(a,b);
}
int f;
for(int i=;i<=n;i++)
{
f=find(i);
if(!vis[f])
{
vis[f]=;
record[cnt++]=f;
}
if(degree[i]%==)
odd[f]++;
}
int res=;
for(int i=;i<cnt;i++)
{
if(degree[record[i]]==)continue;
if(odd[record[i]]==)
res++;
else res+=odd[record[i]]/;
}
destroy();
printf("%d\n",res);
}
return ;
}
ACM3018欧拉回路的更多相关文章
- ACM/ICPC 之 混合图的欧拉回路判定-网络流(POJ1637)
//网络流判定混合图欧拉回路 //通过网络流使得各点的出入度相同则possible,否则impossible //残留网络的权值为可改变方向的次数,即n个双向边则有n次 //Time:157Ms Me ...
- [poj2337]求字典序最小欧拉回路
注意:找出一条欧拉回路,与判定这个图能不能一笔联通...是不同的概念 c++奇怪的编译规则...生不如死啊... string怎么用啊...cincout来救? 可以直接.length()我也是长见识 ...
- ACM: FZU 2112 Tickets - 欧拉回路 - 并查集
FZU 2112 Tickets Time Limit:3000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u P ...
- UVA 10054 the necklace 欧拉回路
有n个珠子,每颗珠子有左右两边两种颜色,颜色有1~50种,问你能不能把这些珠子按照相接的地方颜色相同串成一个环. 可以认为有50个点,用n条边它们相连,问你能不能找出包含所有边的欧拉回路 首先判断是否 ...
- POJ 1637 混合图的欧拉回路判定
题意:一张混合图,判断是否存在欧拉回路. 分析参考: 混合图(既有有向边又有无向边的图)中欧拉环.欧拉路径的判定需要借助网络流! (1)欧拉环的判定:一开始当然是判断原图的基图是否连通,若不连通则一定 ...
- codeforces 723E (欧拉回路)
Problem One-Way Reform 题目大意 给一张n个点,m条边的无向图,要求给每条边定一个方向,使得最多的点入度等于出度,要求输出方案. 解题分析 最多点的数量就是入度为偶数的点. 将入 ...
- UVa 12118 检查员的难题(dfs+欧拉回路)
https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...
- UVA 10054 (欧拉回路) The Necklace
题目:这里 题意:有一种由彩色珠子连接而成的项链,每个珠子两半由不同颜色(由1到50的数字表示颜色)组成,相邻的两个珠子在接触的地方颜色相同,现在有一些零碎的珠子,确认它是否能 复原成完整的项链. 把 ...
- poj2513Colored Sticks(无向图的欧拉回路)
/* 题意:将两端涂有颜色的木棒连在一起,并且连接处的颜色相同! 思路:将每一个单词看成一个节点,建立节点之间的无向图!判断是否是欧拉回路或者是欧拉路 并查集判通 + 奇度节点个数等于2或者0 */ ...
随机推荐
- 深入理解java虚拟机学习笔记(二)
第三章 垃圾收集器与内存分配策略 概述 程序计数器.虚拟机栈.本地方法栈3个区随线程而生,随线程而灭.因此大体上可认为这几个区域的内存分配和回收都具备确定性.在方法/线程结束时,内存自然就跟着回收 ...
- LeetCode 141——环形链表
1. 题目 2. 解答 2.1 方法 1 定义快慢两个指针,慢指针每次前进一步,快指针每次前进两步,若链表有环,则快慢指针一定会相遇. /** * Definition for singly-link ...
- maven项目中没有resource文件夹的问题
之前使用eclipse创建maven项目,文件夹都是建好的,这几次创建,都没有resource文件夹,需要手动创建resource. 现象描述 在eclipse中,创建maven项目有两种方式: 一种 ...
- struts2之form标签theme属性详解
struts2中theme属性包括xhtml,html,simple,ajax .默认是xhtml theme:设置struts2标签的主题,默认为xhtml. theme=xhtml时:会默认额外生 ...
- selenium实现文件上传方法汇总(AutoIt、win32GUI、sengkeys)---基于python
在使用selenium进行UI自动化测试时,经常会遇到一个关于本地文件上传的问题,解决此问题一般分两种情况: 1. 元素标签为input 2.非input型上传 下面我们分别对着两种情况进行实例分析 ...
- codeforces 228E The Road to Berland is Paved With Good Intentions(2-SAT)
Berland has n cities, some of them are connected by bidirectional roads. For each road we know wheth ...
- js经典试题之数据类型
js经典试题之数据类型 1:输出"B" + "a" + + "B" + "a"的值: 答案:BaNaNa. 分析:因为+ ...
- sql分页使用join提高性能
今天在分析系统中的分页sql时意外知道了使用join可以提高分页性能. 逻辑是join部分使用单一表,单一字段排序分页,然后join大表.
- 透过汇编另眼看世界之DLL导出函数调用
前言:我一直对DLL技术充满好奇,一方面是因为我对DLL的导入/导出机制还不是特别的了解,另一面是因为我发现:DLL技术在Windows平台下占有重要的地位,几乎所有的Win32 API都是以导出函数 ...
- Swagger Authorization:bearer <token>
1.添加如下代码 /** * * @SWG\SecurityScheme( * securityDefinition="Bearer", * type="apiKey&q ...