欧拉函数

Time Limit: 5 Sec  Memory Limit: 256 MB
Submit: 1112  Solved: 418
[Submit][Status][Discuss]

Description

已知N,求phi(N)

Input

正整数N。N<=10^18

Output

输出phi(N)

Sample Input

8

Sample Output

4

HINT

 

Source

大整数分解主要背代码,证明非常麻烦。

题目bzoj4802是到经典例题

主要用到了miller_rabin和pollard_rho,算法导论p567与p571

以下是比较理想代码,算法复杂度n^(1/4),及——根号根号n,用到了以下map

#include<cstdio>
#include<algorithm>
#include<iostream>
#include<cmath>
#include<cstring>
#include<map>
#include<ctime>
typedef long long ll;
using namespace std;
const int times=;
int number=;
map<ll,int>m;
ll q_mul(ll a,ll b,ll mod)
{
ll ans=;
while (b)
{
if (b&)
{
ans=(ans+a)%mod;
}
b/=;
a=(a+a)%mod;
}
return ans;
}
ll q_pow(ll a,ll b,ll mod)
{
ll ans=;
while (b)
{
if (b&)
{
ans=q_mul(ans,a,mod);
}
b/=;
a=q_mul(a,a,mod);
}
return ans;
}
bool witness(ll a,ll n)
{
ll tem=n-;
int j=;
while (tem%==)
{
tem/=;
j++;
}
ll p;
ll x=q_pow(a,tem,n);
while (j--)
{
p=q_mul(x,x,n);
if (p== && x!= && x!=n-) return true;
x=p;
}
if (p!=) return true;
else return false;
}
bool miller_rabin(ll n)
{
if (n==)
return true;
if (n<||n%==)
return false;
for (int i=;i<=times;i++)
{
long long a=rand()%(n-)+;
if (witness(a,n))
return false;
}
return true;
}
ll gcd(ll a,ll b)
{
return b?gcd(b,a%b):a;
}
long long pollard_rho(ll n,ll c)
{
ll x,y,d,i=,k=;
x=rand()%(n);
y=x;
while()
{
i++;
x=(q_mul(x,x,n)+c)%n;
d=gcd(y-x,n);
if (<d&&d<n)
return d;
if (y==x)
return n;
if (i==k)
{
y=x;
k*=;
}
if (i*i>n) return n;
}
}
void find(ll n)
{
if (n==) return;
if(miller_rabin(n))
{
m[n]++;
number++;
return;
}
ll p=n;
while (p==n)
p=pollard_rho(p,rand()%(n));
find(p);
find(n/p);
}
int main()
{
srand((unsigned)time(NULL));
ll tar;
while (~scanf("%lld",&tar))
{
ll fzy=tar;
number=;
m.clear();
find(tar);
for (map<ll,int>::iterator c=m.begin();c!=m.end();++c)
{
ll x=c->first;
fzy=fzy/x*(x-);
}
printf("%lld\n",fzy);
}
}

bzo4802 欧拉函数 miller_rabin pollard_rho的更多相关文章

  1. 【BZOJ4802】欧拉函数(Pollard_rho)

    [BZOJ4802]欧拉函数(Pollard_rho) 题面 BZOJ 题解 这么大的范围肯定不好杜教筛. 考虑欧拉函数的计算式,显然只需要把\(n\)分解就好了. 直接\(Pollard\_rho\ ...

  2. BZOJ 4802 欧拉函数(Pollard_Rho)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=4802 [题目大意] 已知N,求phi(N),N<=10^18 [题解] 我们用P ...

  3. 数学基础IV 欧拉函数 Miller Rabin Pollard's rho 欧拉定理 行列式

    找了一些曾经没提到的算法.这应该是数学基础系最后一篇. 曾经的文章: 数学基础I 莫比乌斯反演I 莫比乌斯反演II 数学基础II 生成函数 数学基础III 博弈论 容斥原理(hidden) 线性基(h ...

  4. BZOJ4802:欧拉函数(Pollard-Rho,欧拉函数)

    Description 已知N,求phi(N) Input 正整数N.N<=10^18 Output 输出phi(N) Sample Input 8 Sample Output 4 Soluti ...

  5. 【BZOJ4803】逆欧拉函数

    [BZOJ4803]逆欧拉函数 题面 bzoj 题解 题目是给定你\(\varphi(n)\)要求前\(k\)小的\(n\). 设\(n=\prod_{i=1}^k{p_i}^{c_i}\) 则\(\ ...

  6. UVA10200-Prime Time/HDU2161-Primes,例题讲解,牛逼的费马小定理和欧拉函数判素数。

                                                    10200 - Prime Time 此题极坑(本菜太弱),鉴定完毕,9遍过. 题意:很简单的求一个区间 ...

  7. POJ3090 巧用欧拉函数 phi(x)

    POJ3090 给定一个坐标系范围 求不同的整数方向个数 分析: 除了三个特殊方向(y轴方向 x轴方向 (1,1)方向)其他方向的最小向量表示(x,y)必然互质 所以对欧拉函数前N项求和 乘2(关于( ...

  8. BZOJ4802 欧拉函数 (Pollard-Rho Miller-Robin)

    题目 求大数的欧拉函数φ\varphiφ 题解 Pollard-Rho 板子 CODE #pragma GCC optimize (3) #include <bits/stdc++.h> ...

  9. hdu2588 GCD (欧拉函数)

    GCD 题意:输入N,M(2<=N<=1000000000, 1<=M<=N), 设1<=X<=N,求使gcd(X,N)>=M的X的个数.  (文末有题) 知 ...

随机推荐

  1. CSP201612-1:中间数

    引言:CSP(http://www.cspro.org/lead/application/ccf/login.jsp)是由中国计算机学会(CCF)发起的"计算机职业资格认证"考试, ...

  2. [Clr via C#读书笔记]Cp1CLR执行模型

    Cp1CLR执行模型 本章的概念点 CLR=Common Language Runtime 内存管理,程序集加载,安全性,异常处理和线程同步.CLR是基础,支持着面向它的各种语言.各种语言会被对应的编 ...

  3. ES6 之 let / const

    本博文配合 阮一峰 <ES6 标准入门(第3版)>一书进行简要概述 ES6 中的 let 与 const. 历史遗留问题 由于 JS ES3语法中的 var 提升变量.没有块级作用域,因而 ...

  4. jetbrains系列激活

    没钱,只能DB了. 为了避免某些个人私自搭建服务器,以及自己搭建激活服务器,因此,决定使用破解包~~~. 注意:只要破解,就要屏蔽官方激活服务器:0.0.0.0 account.jetbrains.c ...

  5. @Configuration和@Bean

    @Configuration可理解为用spring的时候xml里面的标签 @Bean可理解为用spring的时候xml里面的标签 Spring Boot不是spring的加强版,所以@Configur ...

  6. LogisticRegression Algorithm——机器学习(西瓜书)读书笔记

    import numpy as np from sklearn.datasets import load_breast_cancer import sklearn.linear_model from ...

  7. 软件管理——rpm&dpkg、yum&apt-get

    一般来说著名的linux系统基本上分两大类: 1. RedHat系列:Redhat.Centos.Fedora等 2. Debian系列:Debian.Ubuntu等 一.RedHat 系列     ...

  8. PhotoShop基础工具 -- 移动工具

    还是学点美工的东西吧, 业余爱好   比学编程还难 PS版本 : PhotoShop CS6 1. 移动工具 (1) 工具栏和属性栏 工具栏 和 属性栏 : 左侧的是工具栏, 每选中一个工具, 在菜单 ...

  9. Win10修改编辑hosts文件无法保存怎么办

    Win10无法修改编辑保存hosts文件怎么办?Win10系统默认是没有权限去编辑保存系统里的文件,这也是权限不够才导致修改编辑hosts后无法保存的原因,解决的办法就是把自己的帐户权限给提高就行了. ...

  10. css样式 一定要reset?

    有大神讲过了,直接看http://www.zhangxinxu.com/wordpress/?p=758