【模版】多项式乘法 FFT
https://www.luogu.org/problem/show?pid=3803
题目背景
这是一道模版题
题目描述
给定一个n次多项式F(x),和一个m次多项式G(x)。
请求出F(x)和G(x)的卷积。
输入输出格式
输入格式:
第一行2个正整数n,m。
接下来一行n+1个数字,从低到高表示F(x)的系数。
接下来一行m+1个数字,从低到高表示G(x))的系数。
输出格式:
一行n+m+1个数字,从低到高表示F(x)∗G(x)的系数。
输入输出样例
1 2
1 2
1 2 1
1 4 5 2
说明
保证输入中的系数大于等于 0 且小于等于9。
总共14组测试数据。
对于第1-4组数据:n<=5000,m<=5000,20pts,0.5s。
对于第5-10组数据:n<=300000,m<=300000,60pts,1s。
对于第11-14组数据:n<=1000000,m<=1000000,20pts,2s。
数据有一定梯度。
空间限制:256MB
#include<cstdio>
#include<cmath>
#include<complex>
using namespace std;
#define N 2600001
using namespace std;
const double pi=acos(-);
typedef complex<double> E;
int n,m,l,r[N];
E a[N],b[N];
int read()
{
int x=; char c=getchar();
while(c<''||c>'') c=getchar();
while(c>=''&&c<='') { x=x*+c-''; c=getchar(); }
return x;
}
void fft(E *a,int f)
{
for(int i=;i<n;i++)
if(i<r[i]) swap(a[i],a[r[i]]);
for(int i=;i<n;i<<=)
{
E wn(cos(pi/i),f*sin(pi/i));
for(int p=i<<,j=;j<n;j+=p)
{
E w(,);
for(int k=;k<i;k++,w*=wn)
{
E x=a[j+k],y=w*a[j+k+i];
a[j+k]=x+y; a[j+k+i]=x-y;
}
}
}
}
int main()
{
n=read(); m=read();
for(int i=;i<=n;i++) a[i]=read();
for(int i=;i<=m;i++) b[i]=read();
m+=n;
for(n=;n<=m;n<<=) l++;
for(int i=;i<n;i++) r[i]=(r[i>>]>>)|((i&)<<(l-));
fft(a,); fft(b,);
for(int i=;i<=n;i++) a[i]=a[i]*b[i];
fft(a,-);
for(int i=;i<=m;i++) printf("%d ",(int)(a[i].real()/n+0.5));
}
【模版】多项式乘法 FFT的更多相关文章
- 多项式乘法(FFT)学习笔记
------------------------------------------本文只探讨多项式乘法(FFT)在信息学中的应用如有错误或不明欢迎指出或提问,在此不胜感激 多项式 1.系数表示法 ...
- 【learning】多项式乘法&fft
[吐槽] 以前一直觉得这个东西十分高端完全不会qwq 但是向lyy.yxq.yww.dtz等dalao们学习之后发现这个东西的代码实现其实极其简洁 于是趁着还没有忘记赶紧来写一篇博 (说起来这篇东西的 ...
- 洛谷.3803.[模板]多项式乘法(FFT)
题目链接:洛谷.LOJ. FFT相关:快速傅里叶变换(FFT)详解.FFT总结.从多项式乘法到快速傅里叶变换. 5.4 又看了一遍,这个也不错. 2019.3.7 叕看了一遍,推荐这个. #inclu ...
- @总结 - 1@ 多项式乘法 —— FFT
目录 @0 - 参考资料@ @1 - 一些概念@ @2 - 傅里叶正变换@ @3 - 傅里叶逆变换@ @4 - 迭代实现 FFT@ @5 - 参考代码实现@ @6 - 快速数论变换 NTT@ @7 - ...
- [uoj#34] [洛谷P3803] 多项式乘法(FFT)
新技能--FFT. 可在 \(O(nlogn)\) 时间内完成多项式在系数表达与点值表达之间的转换. 其中最关键的一点便为单位复数根,有神奇的折半性质. 多项式乘法(即为卷积)的常见形式: \[ C_ ...
- UOJ 34 多项式乘法 FFT 模板
这是一道模板题. 给你两个多项式,请输出乘起来后的多项式. 输入格式 第一行两个整数 nn 和 mm,分别表示两个多项式的次数. 第二行 n+1n+1 个整数,表示第一个多项式的 00 到 nn 次项 ...
- [HNOI2017] 礼物 - 多项式乘法FFT
题意:给定两个 \(n\) 元环,环上每个点有权值,分别为 \(x_i, y_i\).定义两个环的差值为 \[\sum_{i=0}^{n-1}{(x_i-y_i)^2}\] 可以旋转其中的一个环,或者 ...
- 【Luogu3808】多项式乘法FFT(FFT)
题目戳我 一道模板题 自己尝试证明了大部分... 剩下的还是没太证出来... 所以就是一个模板放在这里 以后再来补东西吧.... #include<iostream> #include&l ...
- 【模板】多项式乘法(FFT)
题目描述 给定一个n次多项式F(x),和一个m次多项式G(x). 请求出F(x)和G(x)的卷积. 输入输出格式 输入格式: 第一行2个正整数n,m. 接下来一行n+1个数字,从低到高表示F(x)的系 ...
随机推荐
- 往Matlab中添加工具包
使用Matlab过程中,常常会缺少一些函数包导致无法运行,会显示未定义函数. 假如我要用sigshift( ) 这个移位函数,但Matlab中没有,就会提示错误:未定义函数或变量 'sigshift' ...
- git初始化之git config
git初始化之git config 1. 下面的命令将修改/home/[username]/.gitconfig文件,也就是说下面的配置只对每一个ssh的用户可见,所以每个人都需要做. 提 ...
- Centos安装TFTP/NFS/PXE服务器网络引导安装系统
客户端网卡要求支持以PXE启动,配置都在服务端进行,通过PXE网络启动安装系统流程: 客户端以PXE启动发送DHCP请求: 服务器DHCP应答,包括客户端的IP地址,引导文件所在TFTP服务器: 客户 ...
- 第一部分shell编程1基础知识
ls etc/init.d/ shell脚本的路径 ls /usr/local/apache2/ ls /usr/local/apache2/bin/apachectl 1. shell特性命令历史 ...
- iOS开发简单介绍
概览 终于到了真正接触IOS应用程序的时刻了,之前我们花了很多时间去讨论C语言.ObjC等知识,对于很多朋友而言开发IOS第一天就想直接看到成果,看到可以运行的iOS程序.但是这里我想强调一下,前面的 ...
- BZOJ4850/BZOJ2216 JSOI2016灯塔/Poi2011Lightning Conductor(决策单调性)
即对每个i最大化hj-hi+sqrt(|i-j|).先把绝对值去掉,正反各做一次即可.注意到当x>y时,sqrt(x+1)-sqrt(x)<sqrt(y+1)-sqrt(y),所以若对于i ...
- BZOJ4709 JSOI2011柠檬(动态规划)
首先要冷静下来发现这仅仅是在划分区间.显然若有相邻的数字相同应当划分在同一区间.还有一个显然的性质是区间的两端点应该相同且选择的就是端点的数.瞬间暴力dp就变成常数极小100002了.可以继续斜率优化 ...
- 前台界面(2)---CSS 样式
目录 1. 内联样式 2. 层叠样式表CSS 2.1. 类选择器 2.1.1. 颜色设置 2.1.2. 字号设置 2.1.3. CSS边框属性 2.1.4. 设置背景颜色 2.1.5. 设置布局边框 ...
- Gevent-自动挡切换
Gevent: Gevent 是一个第三方库,可以轻松通过gevent实现并发同步或异步编程,在gevent中用到的主要模式是Greenlet, 它是以C扩展模块形式接入Python的轻量级协程. G ...
- [洛谷P3979]遥远的国度
题目大意:有一棵$n$个点的树,每个点有一个点权,有三种操作: $1\;x:$把根变成$x$ $2\;u\;v\;x:$把路径$u->v$上的点权改为$x$ $3\;x:$询问以$x$为根的子树 ...