Description

小C是某知名比赛的组织者,该比赛一共有n名选手参加,每个选手的成绩是一个非负整数,定义一个选手的排名是

:成绩不小于他的选手的数量(包括他自己)。例如如果3位选手的成绩分别是[1,2,2],那么他们的排名分别是

[3,2,2]。拥有上帝视角的你知道所有选手的实力,所以在考试前就精准地估计了每个人的成绩,设你估计的第i

个选手的成绩为Ai,且由于你是上帝视角,所以如果不发生任何意外的话,你估计的成绩就是选手的最终成绩。但

是在比赛当天发生了不可抗的事故(例如遭受到了外星人的攻击),导致有一些选手的成绩变成了最终成绩的两倍

,即便是有上帝视角的你也不知道具体是哪些选手的成绩翻倍了,唯一知道的信息是这样的选手恰好有k个。现在

你需要计算,经过了不可抗事故后,对于第i位选手,有多少种情况满足他的排名没有改变。由于答案可能过大,

所以你只需要输出答案对998244353取模的值即可。

Solution

分不增大 \(i\) 和增大 \(i\) 讨论一下.

#include<bits/stdc++.h>
using namespace std;
const int N=1e5+10,mod=998244353;
int n,K,Fac[N],inv[N],a[N],b[N],ans[N];
inline int C(int n,int m){
if(n<m||n<0||m<0)return 0;
return 1ll*Fac[n]*inv[m]%mod*inv[n-m]%mod;
}
int main(){
freopen("pp.in","r",stdin);
freopen("pp.out","w",stdout);
cin>>n>>K,Fac[0]=inv[0]=inv[1]=1;
for(int i=1;i<=n;i++)scanf("%d",&a[i]),b[i]=a[i];
for(int i=2;i<=n;i++)inv[i]=(mod-1ll*(mod/i)*inv[mod%i]%mod)%mod;
for(int i=1;i<=n;i++)Fac[i]=1ll*Fac[i-1]*i%mod,inv[i]=1ll*inv[i]*inv[i-1]%mod;
int l1=0,l2=0;
sort(a+1,a+n+1);
for(int i=1;i<=n;i++){
while(a[l1+1]*2<a[i])++l1;
while(a[l2+1]<a[i])++l2;
int t=lower_bound(a+1,a+n+1,2*a[i])-a-1;
int s=t-(lower_bound(a+1,a+n+1,a[i])-a);
if(s>=0)ans[i]=(C(l1+n-i,K)+C(l2+n-t,K-s-1))%mod;
else ans[i]=C(n,K);
}
for(int i=1;i<=n;i++)printf("%d\n",ans[lower_bound(a+1,a+n+1,b[i])-a]);
return 0;
}

bzoj 5368: [Pkusc2018]真实排名的更多相关文章

  1. 【LOJ4632】[PKUSC2018]真实排名

    [LOJ4632][PKUSC2018]真实排名 题面 终于有题面啦!!! 题目描述 小 C 是某知名比赛的组织者,该比赛一共有 \(n\) 名选手参加,每个选手的成绩是一个非负整数,定义一个选手的排 ...

  2. [PKUSC2018]真实排名

    [PKUSC2018]真实排名 题目大意: 有\(n(n\le10^5)\)个人,每个人有一个成绩\(A_i(0\le A_i\le10^9)\).定义一个人的排名为\(n\)个人中成绩不小于他的总人 ...

  3. BZOJ_5368_[Pkusc2018]真实排名_组合数

    BZOJ_5368_[Pkusc2018]真实排名_组合数 Description 小C是某知名比赛的组织者,该比赛一共有n名选手参加,每个选手的成绩是一个非负整数,定义一个选手的排名是:成绩不小于他 ...

  4. [PKUSC2018]真实排名——线段树+组合数

    题目链接: [PKUSC2018]真实排名 对于每个数$val$分两种情况讨论: 1.当$val$不翻倍时,那么可以翻倍的是权值比$\frac{val-1}{2}$小的和大于等于$val$的. 2.当 ...

  5. 【洛谷5368】[PKUSC2018] 真实排名(组合数学)

    点此看题面 大致题意: 有\(n\)个数字,定义一个数的排名为不小于它的数的个数.现要随机将其中\(k\)个数乘\(2\),求对于每个数有多少种方案使其排名不变. 分类讨论 对于这种题目,我们可以分类 ...

  6. BZOJ5368:[PKUSC2018]真实排名(组合数学)

    Description 小C是某知名比赛的组织者,该比赛一共有n名选手参加,每个选手的成绩是一个非负整数,定义一个选手的排名是:成绩不小于他的选手的数量(包括他自己). 例如如果333位选手的成绩分别 ...

  7. bzoj5368 [Pkusc2018]真实排名

    题目描述: bz luogu 题解: 组合数计数问题. 首先注意排名指的是成绩不小于他的选手的数量(包括他自己). 考虑怎么增大才能改变排名. 小学生都知道,对于成绩为$x$的人,让他自己不动并让$\ ...

  8. Luogu P5368 [PKUSC2018]真实排名

    老年选手只会做SB题了(还调了好久) 很容易想到分类讨论,按第\(i\)个人有没有翻倍来算 若\(a_i\)未翻倍,显然此时将\([0,\lceil \frac{a_i}{2}\rceil)\)的数和 ...

  9. LOJ6432 [PKUSC2018] 真实排名 【组合数】

    题目分析: 做三个指针然后预处理阶乘就行. 题目代码: #include<bits/stdc++.h> using namespace std; ; ; int n,k; struct n ...

随机推荐

  1. C# 连接Oracle,并调用存储过程(存在返回值),C# 调用sql存储过程

    1.获取Oracle表格信息 public OracleHelpers(string ConnStr) { ConnectionString = ConnStr; conn = new OracleC ...

  2. 网站运维之 使用IIS日志分析器1.03.exe进行IIS服务器日志分析

    引言 对于网站运维是一个比较要细心有耐心的工作,当一个网站从开发到上线后,后期的维护也很关键,特别是对于引流的网站来说更是至关重要. 对于网站运维的内容大致可以分为: SEO流量监控方面:风险防控:访 ...

  3. 比特币解锁脚本中的ScriptSignature都包含了什么东西

    比特币 解锁脚本signature script 包含了那些东西? 使用 UTXO 需要私钥签名,私钥到底都签了什么东西呢?一直比较好奇. 比特币的私钥签名总共有五中类型,具体见 btcd 代码,如下 ...

  4. jvisualvm_使用jstatd连接远程linux应用

    [1]确定linux系统正确安装了ssh # sudo ps -e | grep ssh ①注意使用root,使用$会报如下错误: [appadmin@webcsuat2 ~]$ sudo ps -e ...

  5. threading.local()方法;线程池

    一,threading.local() import time import threading v = threading.local() def func(arg): # 内部会为当前线程创建一个 ...

  6. Linux下对于makefile的理解

    什么是makefile呢?在Linux下makefile我们可以把理解为工程的编译规则.一个工程中源文件不计数,其按类型.功能.模块分别放在若干个目录中,makefile定义了一系列的规则来指定,那些 ...

  7. NFS共享服务

    一.网络文件系统共享服务 NFS( Network File System,网络文件系统 )是一种基于TCP/IP传输的网络文件系统协议,最初由SUN公司开发,通过使用NFS协议,客户机可以像访问本地 ...

  8. localstorage在safri下的坑

    在ios10.2中的safri浏览器里无痕模式会导致localstorage不能正常使用 具体解决办法如下: if (typeof localStorage === 'object') { try { ...

  9. BUAA_OO_homworkone包含三角函数的多项式求导

    第一次作业 基于x的简单多项式相加求导 带符号整数 支持前导0的带符号整数,符号可省略,如: +02.-16>.19260817等. 幂函数 一般形式 由自变量x和指数组成,指数为一个带符号整数 ...

  10. openstack的部署与运维

    来公司几个月了,除了搭建了kvm虚拟机,使用3台虚拟机组合成一个openstack的网络环境.还没有正式将openstack搭建起来过.时间都在开发web程序.不过openstack也是要学习的.只能 ...