一 题目:斐波那契数列

题目:写一个函数,输入n,求斐波那契(Fibonacci)数列的第n项。斐波那契数列的定义如下:

二 效率很低的解法

  很多C/C++/C#/Java语言教科书在讲述递归函数的时候,大多都会用Fibonacci作为例子,因此我们会对这种解法烂熟于心

#include "stdio.h"
#include <iostream>
using namespace std; int Fibs(int n)
{
if (0 == n)
{
return ;
}
else if (1 == n)
{
return ;
}
return Fibs(n-) + Fibs(n-);
} void main()
{
cout << "斐波那契数列:" << endl;
cout <<Fibs()<<" ";
cout <<Fibs()<<" ";
cout <<Fibs()<<" ";
cout <<Fibs()<<" ";
cout <<Fibs()<<" ";
cout <<Fibs()<<" ";
cout <<Fibs()<<" ";
cout <<Fibs()<<" ";
cout <<Fibs()<<" " << endl;
return;
}

  上述递归的解法有很严重的效率问题,通过求解第10项的调用过程图来分析:

  

  从上图中不难发现:在这棵树中有很多结点是重复的,而且重复的结点数会随着n的增大而急剧增加,这意味计算量会随着n的增大而急剧增大。事实上,用递归方法计算的时间复杂度是以n的指数的方式递增的

三 时间复杂度为O(n)的解法

  改进的方法并不复杂。上述递归代码之所以慢是因为重复的计算太多,我们只要想办法避免重复计算就行了。这里的办法是从下往上计算,首先根据f(0)和f(1)算出f(2),再根据f(1)和f(2)算出f(3)……依此类推就可以算出第n项了。很容易理解,这种思路的时间复杂度是O(n)

#include "stdio.h"
#include <iostream>
using namespace std; int Fibs(int n)
{
int nFibs = ;
if ( == n)
{
return ;
}
else if( == n)
{
return ;
}
int nSubOne = ; // Fibs(n-1)
int nSubTwo = ; // Fibs(n-2)
for (int i = ; i <= n; i ++)
{
nFibs = nSubOne + nSubTwo;
nSubTwo = nSubOne;
nSubOne = nFibs;
} return nFibs;
} void main()
{
cout << "斐波那契数列:" << endl;
cout <<Fibs()<<" ";
cout <<Fibs()<<" ";
cout <<Fibs()<<" ";
cout <<Fibs()<<" ";
cout <<Fibs()<<" ";
cout <<Fibs()<<" ";
cout <<Fibs()<<" ";
cout <<Fibs()<<" ";
cout <<Fibs()<<" " << endl;
return;
}

剑指Offer面试题:7.斐波那契数列的更多相关文章

  1. 剑指Offer - 九度1387 - 斐波那契数列

    剑指Offer - 九度1387 - 斐波那契数列2013-11-24 03:08 题目描述: 大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项.斐波那契数列的定义如下: ...

  2. 剑指offer第二版-10.斐波那契数列

    面试题10:斐波那契数列 题目要求: 求斐波那契数列的第n项的值.f(0)=0, f(1)=1, f(n)=f(n-1)+f(n-2) n>1 思路:使用循环从下往上计算数列. 考点:考察对递归 ...

  3. 【剑指offer】9、斐波拉契数列

    面试题9.斐波拉契数列 题目: 输入整数n,求斐波拉契数列第n个数. 思路: 一.递归式算法: 利用f(n) = f(n-1) + f(n-2)的特性来进行递归,代码如下: 代码: long long ...

  4. 剑指offer【07】- 斐波那契数列(java)

    题目:斐波那契数列 考点:递归和循环 题目描述:大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项(从0开始,第0项为0),n<=39. 法一:递归法,不过递归比较慢, ...

  5. 剑指offer(7)斐波那契数列

    题目描述 大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项. n<=39 题目分析 我们都知道斐波那契可以用递归,但是递归重复计算的部分太多了(虽然可以通过),但是这 ...

  6. 【剑指Offer】7、斐波那契数列

      题目描述:   大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项(从0开始,第0项为0).假设n<=39.   解题思路:   斐波那契数列:0,1,1,2,3, ...

  7. 【剑指offer】7:斐波那契数列

    题目描述: 大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项(从0开始,第0项为0,第1项是1).假设 n≤39 解题思路: 斐波拉契数列:1,1,2,3,5,8--,总结 ...

  8. 剑指offer——矩阵覆盖(斐波那契变形)

    ****感觉都可以针对斐波那契写一个变形题目的集合了****** 我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形.请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法? cl ...

  9. 【剑指offer】面试题 10. 斐波那契数列

    面试题 10. 斐波那契数列 题目一:求斐波那契数列的第n项 题目描述:求斐波拉契数列的第n项 写出一个函数,输入n,求斐波拉契(Fibonacci)数列的第n项.斐波拉契数列定义如下: C++ 实现 ...

  10. 剑指offer编程题Java实现——面试题9斐波那契数列

    题目:写一个函数,输入n,求斐波那契数列的第n项. package Solution; /** * 剑指offer面试题9:斐波那契数列 * 题目:写一个函数,输入n,求斐波那契数列的第n项. * 0 ...

随机推荐

  1. sublime Text emmet插件使用手册

    转自:http://www.w3cplus.com/tools/emmet-cheat-sheet.html 介绍 Emmet (前身为 Zen Coding) 是一个能大幅度提高前端开发效率的一个工 ...

  2. Apache 访问控制

    Apache访问控制 通过设置访问控制,可对网站进行权限管理,提高安全性. 参数介绍 <Directory />: 行为对根目录的限制 Options:允许使用控制目录特征的指令.他们包括 ...

  3. jQuery双向滑动杆 设置数值百分比

    在线演示 本地下载

  4. jQuery多层级垂直手风琴菜单

    在线演示 本地下载

  5. 联合体union

    1.一般而言,共用体类型实际占用存储空间为其最长的成员所占的存储空间: //4*7==282.若是该最长的存储空间对其他成员的元类型(如果是数组,取其类型的数据长度,例int a[5]为4)不满足整除 ...

  6. 配置iptables实现本地端口转发的方法详解

    场景假如你在用 resin 调试一个 Web 程序,需要频繁地重启 resin.这个 Web 程序需要开在 80 端口上,而 Linux 限制 1024 以下的端口必须有 root 权限才能开启.但是 ...

  7. SpringBoot @Annotation

    Annotation简介 Annotation是JDK1.5引入的特性,包含在java.lang.annotation包中. 它是附加在代码中的一些元信息,将一个类的外部信息与内部成员联系起来,在 编 ...

  8. SpringBoot 通用返回类设计

    在项目中通常需要为前端设计通过的返回类,返回的格式为: { "status": "success", "data": {...} } 定义通 ...

  9. Permutations,全排列

    问题描述:给定一个数组,数字中数字不重复,求所有全排列. 算法分析:可以用交换递归法,也可以用插入法. 递归法:例如,123,先把1和1交换,然后递归全排列2和3,然后再把1和1换回来.1和2交换,全 ...

  10. spring3: AOP 之 6.2 AOP的HelloWorld

    6.2.1  准备环境 首先准备开发需要的jar包,请到spring-framework-3.0.5.RELEASE-dependencies.zip和spring-framework-3.0.5.R ...