BZOJ2111:[ZJOI2010]排列计数——题解
https://www.lydsy.com/JudgeOnline/problem.php?id=2111
https://www.luogu.org/problemnew/show/P2606#sub
称一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2<=i<=N时,Pi>Pi/2. 计算1,2,...N的排列中有多少是Magic的,答案可能很大,只能输出模P以后的值
画成二叉树后容易发现这就是一个小根堆。
于是就变成了求符合条件的小根堆数量。
显然根只能放当前最小数,然后给左子树分配左子树大小个数,右子树同理。
所以就有f[i]=C(i-1,l)*f[l]*f[r]。
另外这题卡快速幂的log,所以预处理。
#include<cstdio>
#include<iostream>
#include<vector>
#include<queue>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long ll;
const int N=1e6+;
inline int read(){
int X=,w=;char ch=;
while(!isdigit(ch)){w|=ch=='-';ch=getchar();}
while(isdigit(ch))X=(X<<)+(X<<)+(ch^),ch=getchar();
return w?-X:X;
}
int lg[N],f[N],inv[N],fac[N];
int qpow(ll k,int n,int p){
int ans=;
while(n){
if(n&)ans=(ll)ans*k%p;
k=(ll)k*k%p;n>>=;
}
return ans;
}
int C(int n,int m,int p){
if(m>n)return ;
if(m==n)return ;
return (ll)fac[n]*inv[m]%p*inv[n-m]%p;
}
int lucas(int n,int m,int p){
int ans=;
while(n&&m&&ans){
ans=(ll)ans*C(n%p,m%p,p)%p;
n/=p,m/=p;
}
return ans;
}
inline int lsize(int n){
int c=lg[n]+;
if(c==)return ;
int t=n-(<<c-)+;
return (<<c-)-+min((<<c->>),t);
}
int main(){
int n=read(),p=read(); lg[]=;fac[]=;
for(int i=;i<=n;i++){
lg[i]=lg[i-];
if((<<lg[i]+)==i)lg[i]++;
fac[i]=(ll)fac[i-]*i%p;
} int mx=min(p-,n);
inv[mx]=qpow(fac[mx],p-,p);
for(int i=mx-;i>=;i--)inv[i]=(ll)inv[i+]*(i+)%p; f[]=f[]=;
for(int i=;i<=n;i++){
int l=lsize(i);
f[i]=(ll)lucas(i-,l,p)*f[l]%p*f[i-l-]%p;
}
printf("%d\n",f[n]);
return ;
}
+++++++++++++++++++++++++++++++++++++++++++
+本文作者:luyouqi233。 +
+欢迎访问我的博客:http://www.cnblogs.com/luyouqi233/ +
+++++++++++++++++++++++++++++++++++++++++++
BZOJ2111:[ZJOI2010]排列计数——题解的更多相关文章
- bzoj2111 [ZJOI2010]排列计数
Description 称一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2<=i<=N时,Pi>Pi/2. 计算1,2,...N的排列中有多少是Magic ...
- [ZJOI2010]排列计数 题解
Description 称一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2<=i<=N时,Pi>Pi/2. 计算1,2,...N的排列中有多少是Magic ...
- BZOJ2111 ZJOI2010排列计数
根据Pi>Pi/2可以看出来这是一个二叉树 所以我们可以用树形DP的思想 f[i]=f[i<<1]*f[i<<1|1]*C(s[i]-1,s[i<<1]),s ...
- 【BZOJ2111】[ZJOI2010]排列计数(组合数学)
[BZOJ2111][ZJOI2010]排列计数(组合数学) 题面 BZOJ 洛谷 题解 就是今年九省联考\(D1T2\)的弱化版? 直接递归组合数算就好了. 注意一下模数可以小于\(n\),所以要存 ...
- [ZJOI2010]排列计数 (组合计数/dp)
[ZJOI2010]排列计数 题目描述 称一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2<=i<=N时,Pi>Pi/2. 计算1,2,...N的排列中有 ...
- 洛谷 P2606 [ZJOI2010]排列计数 解题报告
P2606 [ZJOI2010]排列计数 题目描述 称一个\(1,2,...,N\)的排列\(P_1,P_2...,P_n\)是\(Magic\)的,当且仅当对所以的\(2<=i<=N\) ...
- P2606 [ZJOI2010]排列计数
P2606 [ZJOI2010]排列计数 因为每个结点至多有一个前驱,所以我们可以发现这是一个二叉树.现在我们要求的就是以1为根的二叉树中,有多少种情况,满足小根堆的性质. 设\(f(i)\)表示以\ ...
- 洛谷 P4071 [SDOI2016]排列计数 题解
P4071 [SDOI2016]排列计数 题目描述 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 i,则称 i 是稳 ...
- 洛谷P2602 [ZJOI2010]数字计数 题解 数位DP
题目链接:https://www.luogu.com.cn/problem/P2602 题目大意: 计算区间 \([L,R]\) 范围内 \(0 \sim 9\) 各出现了多少次? 解题思路: 使用 ...
随机推荐
- MyBatis-MBG(MyBatis Generator)
1.添加jar包 <dependency> <groupId>org.mybatis.generator</groupId> <artifactId>m ...
- iOS - Foundation相关
1.NSString A.创建的方式: stringWithFormat:格式化字符串 ,创建字符串对象在堆区域 @"jack& ...
- jmeter开发自己的sampler插件
1. 新建maven工程 2.pom文件引入jmeter的核心包 <project xmlns="http://maven.apache.org/POM/4.0.0" xml ...
- Visual Studio 起始页中不显示最近使用的项目的解决办法
将 HKEY_CURRENT_USER/Software/Microsoft/Windows/CurrentVersion/Policies/Explorer/NoRecentDocsHistory的 ...
- 第5章 Linux网络编程基础
第5章 Linux网络编程基础 5.1 socket地址与API 一.理解字节序 主机字节序一般为小端字节序.网络字节序一般为大端字节序.当格式化的数据在两台使用了不同字节序的主机之间直接传递时,接收 ...
- ObjectMapper的使用
Jackson ObjectMapper类 ObjectMapper类是Jackson库的主要类它提供一些功能将Java对象转换成JSON结构,反之亦然它使用JsonParser和JsonGenera ...
- Visual Stdio Code编辑Mark Down
Visual Studio Code可以一边写Markdown一边预览了,而且不需要任何插件. 方法如下: 新建一个文件,以 .md 为后缀: Visual Studio Code 原生就支持高亮Ma ...
- 技本功丨知否知否,Redux源码竟如此意味深长(下集)
上集回顾 Redux是如何使用的?首先再来回顾一下这个使用demo(谁让这段代码完整地展示了redux的使用) 如果有小伙伴对这段代码不是很理解的话,建议先去学习Redux的使用再来看这篇源码,这样更 ...
- Ubuntu 16.04 安装显卡驱动后循环登录和无法设置分辨率的一种解决方案
1. 安装环境 电脑:MSI GP63 显卡:GeForce GTX 1070 系统:Ubuntu 16.04 驱动版本:NVIDIA 384.130 2. 循环登录 如果按照这篇文章 Ubuntu ...
- maven项目中没有resource文件夹的问题
之前使用eclipse创建maven项目,文件夹都是建好的,这几次创建,都没有resource文件夹,需要手动创建resource. 现象描述 在eclipse中,创建maven项目有两种方式: 一种 ...