https://www.lydsy.com/JudgeOnline/problem.php?id=2111

https://www.luogu.org/problemnew/show/P2606#sub

称一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2<=i<=N时,Pi>Pi/2. 计算1,2,...N的排列中有多少是Magic的,答案可能很大,只能输出模P以后的值

画成二叉树后容易发现这就是一个小根堆。

于是就变成了求符合条件的小根堆数量。

显然根只能放当前最小数,然后给左子树分配左子树大小个数,右子树同理。

所以就有f[i]=C(i-1,l)*f[l]*f[r]。

另外这题卡快速幂的log,所以预处理。

#include<cstdio>
#include<iostream>
#include<vector>
#include<queue>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long ll;
const int N=1e6+;
inline int read(){
int X=,w=;char ch=;
while(!isdigit(ch)){w|=ch=='-';ch=getchar();}
while(isdigit(ch))X=(X<<)+(X<<)+(ch^),ch=getchar();
return w?-X:X;
}
int lg[N],f[N],inv[N],fac[N];
int qpow(ll k,int n,int p){
int ans=;
while(n){
if(n&)ans=(ll)ans*k%p;
k=(ll)k*k%p;n>>=;
}
return ans;
}
int C(int n,int m,int p){
if(m>n)return ;
if(m==n)return ;
return (ll)fac[n]*inv[m]%p*inv[n-m]%p;
}
int lucas(int n,int m,int p){
int ans=;
while(n&&m&&ans){
ans=(ll)ans*C(n%p,m%p,p)%p;
n/=p,m/=p;
}
return ans;
}
inline int lsize(int n){
int c=lg[n]+;
if(c==)return ;
int t=n-(<<c-)+;
return (<<c-)-+min((<<c->>),t);
}
int main(){
int n=read(),p=read(); lg[]=;fac[]=;
for(int i=;i<=n;i++){
lg[i]=lg[i-];
if((<<lg[i]+)==i)lg[i]++;
fac[i]=(ll)fac[i-]*i%p;
} int mx=min(p-,n);
inv[mx]=qpow(fac[mx],p-,p);
for(int i=mx-;i>=;i--)inv[i]=(ll)inv[i+]*(i+)%p; f[]=f[]=;
for(int i=;i<=n;i++){
int l=lsize(i);
f[i]=(ll)lucas(i-,l,p)*f[l]%p*f[i-l-]%p;
}
printf("%d\n",f[n]);
return ;
}

+++++++++++++++++++++++++++++++++++++++++++

+本文作者:luyouqi233。               +

+欢迎访问我的博客:http://www.cnblogs.com/luyouqi233/ +

+++++++++++++++++++++++++++++++++++++++++++

BZOJ2111:[ZJOI2010]排列计数——题解的更多相关文章

  1. bzoj2111 [ZJOI2010]排列计数

    Description 称一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2<=i<=N时,Pi>Pi/2. 计算1,2,...N的排列中有多少是Magic ...

  2. [ZJOI2010]排列计数 题解

    Description 称一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2<=i<=N时,Pi>Pi/2. 计算1,2,...N的排列中有多少是Magic ...

  3. BZOJ2111 ZJOI2010排列计数

    根据Pi>Pi/2可以看出来这是一个二叉树 所以我们可以用树形DP的思想 f[i]=f[i<<1]*f[i<<1|1]*C(s[i]-1,s[i<<1]),s ...

  4. 【BZOJ2111】[ZJOI2010]排列计数(组合数学)

    [BZOJ2111][ZJOI2010]排列计数(组合数学) 题面 BZOJ 洛谷 题解 就是今年九省联考\(D1T2\)的弱化版? 直接递归组合数算就好了. 注意一下模数可以小于\(n\),所以要存 ...

  5. [ZJOI2010]排列计数 (组合计数/dp)

    [ZJOI2010]排列计数 题目描述 称一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2<=i<=N时,Pi>Pi/2. 计算1,2,...N的排列中有 ...

  6. 洛谷 P2606 [ZJOI2010]排列计数 解题报告

    P2606 [ZJOI2010]排列计数 题目描述 称一个\(1,2,...,N\)的排列\(P_1,P_2...,P_n\)是\(Magic\)的,当且仅当对所以的\(2<=i<=N\) ...

  7. P2606 [ZJOI2010]排列计数

    P2606 [ZJOI2010]排列计数 因为每个结点至多有一个前驱,所以我们可以发现这是一个二叉树.现在我们要求的就是以1为根的二叉树中,有多少种情况,满足小根堆的性质. 设\(f(i)\)表示以\ ...

  8. 洛谷 P4071 [SDOI2016]排列计数 题解

    P4071 [SDOI2016]排列计数 题目描述 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 i,则称 i 是稳 ...

  9. 洛谷P2602 [ZJOI2010]数字计数 题解 数位DP

    题目链接:https://www.luogu.com.cn/problem/P2602 题目大意: 计算区间 \([L,R]\) 范围内 \(0 \sim 9\) 各出现了多少次? 解题思路: 使用 ...

随机推荐

  1. centos7下安装mysql8.0.12及设置权限

    一.mysql版本介绍 mysql的官网为:https://www.mysql.com/ 在官网上可以看到多个版本,主要版本如下, 1.MySQL Community Server 社区版本,开源免费 ...

  2. 欧陆词典PEST2词库

    欧陆词典PEST2单词列表,其中大概1900+单词,可能有少数几个没有录入,但不影响使用!

  3. 「日常训练」Kefa and Dishes(Codeforces Round #321 Div. 2 D)

    题意与分析(CodeForces 580D) 一个人有\(n\)道菜,然后要点\(m\)道菜,每道菜有一个美味程度:然后给你了很多个关系,表示如果\(x\)刚好在\(y\)前面做的话,他的美味程度就会 ...

  4. hdu1394Minimum Inversion Number(线段树,求最小逆序数)

    Minimum Inversion Number Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java ...

  5. [SHELL]结构化命令之条件语句

    1.if-then语句  #!/bin/bash username="root" if grep $username /etc/passwd then echo "the ...

  6. JavaScript 之 对象/JSON/数组

    对象 简单说,所谓对象,就是一种无序的数据集合,由若干个“键值对”(key-value)构成. var obj = { p: 'Hello World' }; 上面代码中,大括号就定义了一个对象,它被 ...

  7. Bootstrap框架(组件)

    按钮组 通过按钮组容器把一组按钮放在同一行里.通过与按钮插件联合使用,可以设置为单选框或多选框的样式和行为. 按钮组中的工具提示和弹出框需要特别的设置 当为 .btn-group 中的元素应用工具提示 ...

  8. Notes of the scrum meeting before publishing(12.19)

    meeting time:18:30~20:30p.m.,December 19th,2013 meeting place:3号公寓一层 attendees: 顾育豪                  ...

  9. C语言 指针数组 多维数组

    . 作者 : 万境绝尘 转载请注明出处 : http://blog.csdn.net/shulianghan/article/details/21402047 . 1. 地址算数运算示例 指针算数运算 ...

  10. 【IdentityServer4文档】- 欢迎来到 IdentityServer4

    欢迎来到 IdentityServer4 IdentityServer4 是一款包含和实现了 OpenID Connect 和 OAuth 2.0 协议的,适用于 ASP.NET Core 的框架 . ...