考试的时候没有做出来。。。

想到了答案一定是一段连续的区间,一直在纠结BFS判断最后的可行1数。

原来直接模拟一遍就可以算出来最后的端点。。。

剩下的就是组合数取模了,用逆元就行了。。。

# include <cstdio>
# include <cstring>
# include <cstdlib>
# include <iostream>
# include <vector>
# include <queue>
# include <stack>
# include <map>
# include <set>
# include <cmath>
# include <algorithm>
using namespace std;
# define lowbit(x) ((x)&(-x))
# define pi 3.1415926535
# define eps 1e-
# define MOD
# define INF
# define mem(a,b) memset(a,b,sizeof(a))
# define FOR(i,a,n) for(int i=a; i<=n; ++i)
# define FO(i,a,n) for(int i=a; i<n; ++i)
# define bug puts("H");
# define lch p<<,l,mid
# define rch p<<|,mid+,r
# define mp make_pair
# define pb push_back
typedef pair<int,int> PII;
typedef vector<int> VI;
# pragma comment(linker, "/STACK:1024000000,1024000000")
typedef long long LL;
int Scan() {
int res=, flag=;
char ch;
if((ch=getchar())=='-') flag=;
else if(ch>=''&&ch<='') res=ch-'';
while((ch=getchar())>=''&&ch<='') res=res*+(ch-'');
return flag?-res:res;
}
void Out(int a) {
if(a<) {putchar('-'); a=-a;}
if(a>=) Out(a/);
putchar(a%+'');
}
const int N=;
//Code begin... LL f[N];
LL pow_mod(LL a, LL n, LL mod){
LL ret=, tmp=a%mod;
while (n) {
if (n&) ret=ret*tmp%MOD;
tmp=tmp*tmp%MOD;
n>>=;
}
return ret;
}
LL inv(LL a, LL mod){return pow_mod(a,mod-,mod);}
void init(){
f[]=;
FO(i,,N) f[i]=(f[i-]*i)%MOD;
}
int main ()
{
int n, m, x, l, r, tmpl, tmpr;
LL ans;
init();
while (~scanf("%d%d",&n,&m)) {
l=r=;
ans=;
FOR(i,,n) {
scanf("%d",&x);
if (l>=x) tmpl=l-x;
else if(r>=x) tmpl=((l%)==(x%))?:;
else tmpl=x-r;
if (r+x<=m) tmpr=r+x;
else if(l+x<=m) tmpr=(((l+x)%)==(m%)?m:m-);
else tmpr=*m-l-x;
l=tmpl; r=tmpr;
}
for (int i=l; i<=r; i+=) ans=(ans+(f[m]*inv(f[i]*f[m-i]%MOD,MOD))%MOD)%MOD;
printf("%lld\n",ans);
}
return ;
}

HDU 4869 Turn the pokers(思维+逆元)的更多相关文章

  1. HDU 4869 Turn the pokers(推理)

    HDU 4869 Turn the pokers 题目链接 题意:给定n个翻转扑克方式,每次方式相应能够选择当中xi张进行翻转.一共同拥有m张牌.问最后翻转之后的情况数 思路:对于每一些翻转,假设能确 ...

  2. HDU 4869 Turn the pokers(思维+组合公式+高速幂)

    pid=4869" target="_blank">Turn the pokers 大意:给出n次操作,给出m个扑克.然后给出n个操作的个数a[i],每一个a[i] ...

  3. hdu 4869 Turn the pokers (思维)

    Turn the pokers Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) ...

  4. hdu 4869 Turn the pokers (2014多校联合第一场 I)

    Turn the pokers Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) ...

  5. HDU 4869 Turn the pokers (2014 Multi-University Training Contest 1)

    Turn the pokers Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)T ...

  6. HDU 4869 Turn the pokers (2014多校联合训练第一场1009) 解题报告(维护区间 + 组合数)

    Turn the pokers Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) ...

  7. hdu 4869 Turn the pokers(组合数+费马小定理)

    Problem Description During summer vacation,Alice stay at home for a long time, with nothing to do. S ...

  8. HDU 4869 Turn the pokers (2014 多校联合第一场 I)

    HDOJ--4869--Turn the pokers[组合数学+快速幂] 题意:有m张扑克,开始时全部正面朝下,你可以翻n次牌,每次可以翻xi张,翻拍规则就是正面朝下变背面朝下,反之亦然,问经过n次 ...

  9. 2014多校第一场 I 题 || HDU 4869 Turn the pokers(费马小定理+快速幂模)

    题目链接 题意 : m张牌,可以翻n次,每次翻xi张牌,问最后能得到多少种形态. 思路 :0定义为反面,1定义为正面,(一开始都是反), 对于每次翻牌操作,我们定义两个边界lb,rb,代表每次中1最少 ...

随机推荐

  1. css dropdown menu

    <ul> <li class="left">abc</li> <li class="middle" id=" ...

  2. 屏蔽Drupal中的“Notice: Undefined index”警告

    原因:drupal默认使用E_ALL,即输出所有错误和警告.我们只需要修改错误显示级别即可. 方法: 1. 打开\sites\default\settings.php 追加一行 ini_set('er ...

  3. HI-2110的657sp3版本应用笔记之TUP

    1. TUP是什么? TUP是华为的搞的一套封装了标准Coap的函数,底层是Coap,上层是华为封装的一层收发函数,用来简化Coap的收发流程,最终只用6个函数搞定,不用懂Coap就可以的. 2. T ...

  4. mysql int类型的长度值

    整数类型的存储和范围(来自mysql手册) 类型 字节 最小值 最大值     (带符号的/无符号的) (带符号的/无符号的) TINYINT 1 -128 127     0 255 SMALLIN ...

  5. andriod学习一

    1.Android软件栈       2.Android模拟器        Android SDK 可以通过ADT+Eclipse或者命令行开发,调试,测试应用程序,设备可以使用模拟器或者真实设备, ...

  6. ElasticSearch-Java-low-level-rest-client官方文档翻译

    人肉翻译,非谷歌机翻,部分地方添加了个人的理解,并做了分割,如有错误请在评论指出.转载请指明原链接,尊重个人劳动成果.        High-Level-Rest-Client基于Low-Level ...

  7. java 素数问题

    1.素数 质数定义为在大于1的自然数中,除了1和它本身以外不再有其他因数. 2.java 实现 一般都要用不能被自己和其他数字整除判断,jdk中已经有更好的实现方法了. List<BigInte ...

  8. 对JSON的理解

    JSON语法: JSON是一种结构化数据,它是一种数据格式 JSON可以概括为三种类型:简单值.对象.数组 注意:JSON不支持变量.函数和对象实例 一.JSON简单值 包括字符串.数值.布尔值.和n ...

  9. 「日常训练」 Longest Run on a Snowboard (UVA-10285)

    题意 其实就是一条二维的LIS,但是还是做的一愣一愣的,多努力. 考虑$dp[i][j]$为从(i,j)出发的二维LIS的最大值,那么$dp[i][j]=max\{dp[i−di[k]][j−dj[k ...

  10. WEB安全--高级sql注入,爆错注入,布尔盲注,时间盲注

    1.爆错注入 什么情况想能使用报错注入------------页面返回连接错误信息 常用函数 updatexml()if...floorextractvalue updatexml(,concat() ...