【BZOJ4894】天赋(矩阵树定理)

题面

BZOJ

Description

小明有许多潜在的天赋,他希望学习这些天赋来变得更强。正如许多游戏中一样,小明也有n种潜在的天赋,但有

一些天赋必须是要有前置天赋才能够学习得到的。也就是说,有一些天赋必须是要在学习了另一个天赋的条件下才

能学习的。比如,要想学会"开炮",必须先学会"开枪"。一项天赋可能有多个前置天赋,但只需习得其中一个就可

以学习这一项天赋。上帝不想为难小明,于是小明天生就已经习得了1号天赋-----"打架"。于是小明想知道学习完

这n种天赋的方案数,答案对1,000,000,007取模。

Input

第一行一个整数n。

接下来是一个n*n的01矩阵,第i行第j列为1表示习得天赋j的一个前置天赋为i。

数据保证第一列和主对角线全为0。

n<=300

Output

第一行一个整数,问题所求的方案数。

Sample Input

8

01111111

00101001

01010111

01001111

01110101

01110011

01111100

01110110

Sample Output

72373

题解

还是矩阵树模板题啊。。。

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<queue>
using namespace std;
#define ll long long
#define RG register
#define MAX 303
#define MOD 1000000007
inline int read()
{
RG int x=0,t=1;RG char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=-1,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return x*t;
}
int a[MAX][MAX],n;
char g[MAX];
int main()
{
n=read();
for(int i=1;i<=n;++i)
{
scanf("%s",g+1);
for(int j=1;j<=n;++j)
if(g[j]=='1')a[i][j]--,a[j][j]++;
}
int ans=1;
for(int i=2;i<=n;++i)
for(int j=i+1;j<=n;++j)
while(a[j][i])
{
int t=a[i][i]/a[j][i];
for(int k=i;k<=n;++k)a[i][k]=(a[i][k]-1ll*a[j][k]*t%MOD+MOD)%MOD,swap(a[i][k],a[j][k]);
ans*=-1;
}
for(int i=2;i<=n;++i)ans=1ll*ans*a[i][i]%MOD;
printf("%d\n",(ans+MOD)%MOD);
return 0;
}

【BZOJ4894】天赋(矩阵树定理)的更多相关文章

  1. BZOJ4894:天赋(矩阵树定理)

    Description 小明有许多潜在的天赋,他希望学习这些天赋来变得更强.正如许多游戏中一样,小明也有n种潜在的天赋,但有一些天赋必须是要有前置天赋才能够学习得到的. 也就是说,有一些天赋必须是要在 ...

  2. 【bzoj4894】天赋 矩阵树定理

    题目描述 小明有许多潜在的天赋,他希望学习这些天赋来变得更强.正如许多游戏中一样,小明也有n种潜在的天赋,但有一些天赋必须是要有前置天赋才能够学习得到的.也就是说,有一些天赋必须是要在学习了另一个天赋 ...

  3. @总结 - 7@ 生成树计数 —— matrix - tree 定理(矩阵树定理)与 prüfer 序列

    目录 @0 - 参考资料@ @0.5 - 你所需要了解的线性代数知识@ @1 - 矩阵树定理主体@ @证明 part - 1@ @证明 part - 2@ @证明 part - 3@ @证明 part ...

  4. [spoj104][Highways] (生成树计数+矩阵树定理+高斯消元)

    In some countries building highways takes a lot of time... Maybe that's because there are many possi ...

  5. BZOJ 4766: 文艺计算姬 [矩阵树定理 快速乘]

    传送门 题意: 给定一个一边点数为n,另一边点数为m,共有n*m条边的带标号完全二分图$K_{n,m}$ 求生成树个数 1 <= n,m,p <= 10^18 显然不能暴力上矩阵树定理 看 ...

  6. bzoj 4596 [Shoi2016]黑暗前的幻想乡 矩阵树定理+容斥

    4596: [Shoi2016]黑暗前的幻想乡 Time Limit: 20 Sec  Memory Limit: 256 MBSubmit: 559  Solved: 325[Submit][Sta ...

  7. 【LOJ#6072】苹果树(矩阵树定理,折半搜索,容斥)

    [LOJ#6072]苹果树(矩阵树定理,折半搜索,容斥) 题面 LOJ 题解 emmmm,这题似乎猫讲过一次... 显然先\(meet-in-the-middle\)搜索一下对于每个有用的苹果数量,满 ...

  8. 2019.01.02 bzoj2467: [中山市选2010]生成树(矩阵树定理)

    传送门 矩阵树定理模板题. 题意简述:自己看题面吧太简单懒得写了 直接构建出这4n4n4n个点然后按照题面连边之后跑矩阵树即可. 代码: #include<bits/stdc++.h> # ...

  9. [CF917D]Stranger Trees[矩阵树定理+解线性方程组]

    题意 给你 \(n\) 个点的无向完全图,指定一棵树 \(S\),问有多少棵生成树和这棵树的公共边数量为 \(k\in[0,n-1]\) \(n\leq 100\) 分析 考虑矩阵树定理,把对应的树边 ...

随机推荐

  1. springboot+websocket+sockjs进行消息推送【基于STOMP协议】

    springboot+websocket+sockjs进行消息推送[基于STOMP协议] WebSocket是在HTML5基础上单个TCP连接上进行全双工通讯的协议,只要浏览器和服务器进行一次握手,就 ...

  2. CDN 缓存策略(转)

    1.CDN加速原理    通过动态域名解析,网友的请求被分配到离自己最快的服务器.CDN服务器直接返回缓存文件或通过专线代理原站的内容.    网络加速+内容缓存,有效提供访问速度 2.CDN节点数量 ...

  3. Linux tcpdump命令详解(分享文章)

    简介 用简单的话来定义tcpdump,就是:dump the traffic on a network,根据使用者的定义对网络上的数据包进行截获的包分析工具. tcpdump可以将网络中传送的数据包的 ...

  4. Ruby 基础教程 1-2

    1.数组 创建 arrayname=[] arrayname=["1",12,"23"] 访问 arrayname[index] 更新 arrayname[in ...

  5. Response对象及常用方法

    void addCookie(Cookie cookie)给客户端添加一个Cookie对象,以保存客户端的信息 void addDateHeader(String name,long value) 添 ...

  6. Spring Cloud(五):Hystrix 监控面板【Finchley 版】

    Spring Cloud(五):Hystrix 监控面板[Finchley 版]  发表于 2018-04-16 |  更新于 2018-05-10 |  在上一篇 Hystrix 的介绍中,我们提到 ...

  7. 397. Longest Continuous Increasing Subsequence

    Description Give an integer array,find the longest increasing continuous subsequence in this array. ...

  8. 最小生成树与Prim算法

    最小生成树(MST) 定义 首先是一棵树(废话 其次没有回路(废话 包含全部顶点和V-1条边 边的权重和最小!!!!! 所以如果是单棵最小生成树,至少说明图是连通的.不然就是森林. 生成思路 既然是根 ...

  9. POJ 2104 K-th Number(划分树)

    Description You are working for Macrohard company in data structures department. After failing your ...

  10. 基于angular+bower+glup的webapp

    一:bower介绍 1:全局安装安装bower cnpm i -g bower bower常用指令: bower init //初始化文件 bower install bower uninstall ...