【BZOJ4894】天赋(矩阵树定理)

题面

BZOJ

Description

小明有许多潜在的天赋,他希望学习这些天赋来变得更强。正如许多游戏中一样,小明也有n种潜在的天赋,但有

一些天赋必须是要有前置天赋才能够学习得到的。也就是说,有一些天赋必须是要在学习了另一个天赋的条件下才

能学习的。比如,要想学会"开炮",必须先学会"开枪"。一项天赋可能有多个前置天赋,但只需习得其中一个就可

以学习这一项天赋。上帝不想为难小明,于是小明天生就已经习得了1号天赋-----"打架"。于是小明想知道学习完

这n种天赋的方案数,答案对1,000,000,007取模。

Input

第一行一个整数n。

接下来是一个n*n的01矩阵,第i行第j列为1表示习得天赋j的一个前置天赋为i。

数据保证第一列和主对角线全为0。

n<=300

Output

第一行一个整数,问题所求的方案数。

Sample Input

8

01111111

00101001

01010111

01001111

01110101

01110011

01111100

01110110

Sample Output

72373

题解

还是矩阵树模板题啊。。。

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<queue>
using namespace std;
#define ll long long
#define RG register
#define MAX 303
#define MOD 1000000007
inline int read()
{
RG int x=0,t=1;RG char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=-1,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return x*t;
}
int a[MAX][MAX],n;
char g[MAX];
int main()
{
n=read();
for(int i=1;i<=n;++i)
{
scanf("%s",g+1);
for(int j=1;j<=n;++j)
if(g[j]=='1')a[i][j]--,a[j][j]++;
}
int ans=1;
for(int i=2;i<=n;++i)
for(int j=i+1;j<=n;++j)
while(a[j][i])
{
int t=a[i][i]/a[j][i];
for(int k=i;k<=n;++k)a[i][k]=(a[i][k]-1ll*a[j][k]*t%MOD+MOD)%MOD,swap(a[i][k],a[j][k]);
ans*=-1;
}
for(int i=2;i<=n;++i)ans=1ll*ans*a[i][i]%MOD;
printf("%d\n",(ans+MOD)%MOD);
return 0;
}

【BZOJ4894】天赋(矩阵树定理)的更多相关文章

  1. BZOJ4894:天赋(矩阵树定理)

    Description 小明有许多潜在的天赋,他希望学习这些天赋来变得更强.正如许多游戏中一样,小明也有n种潜在的天赋,但有一些天赋必须是要有前置天赋才能够学习得到的. 也就是说,有一些天赋必须是要在 ...

  2. 【bzoj4894】天赋 矩阵树定理

    题目描述 小明有许多潜在的天赋,他希望学习这些天赋来变得更强.正如许多游戏中一样,小明也有n种潜在的天赋,但有一些天赋必须是要有前置天赋才能够学习得到的.也就是说,有一些天赋必须是要在学习了另一个天赋 ...

  3. @总结 - 7@ 生成树计数 —— matrix - tree 定理(矩阵树定理)与 prüfer 序列

    目录 @0 - 参考资料@ @0.5 - 你所需要了解的线性代数知识@ @1 - 矩阵树定理主体@ @证明 part - 1@ @证明 part - 2@ @证明 part - 3@ @证明 part ...

  4. [spoj104][Highways] (生成树计数+矩阵树定理+高斯消元)

    In some countries building highways takes a lot of time... Maybe that's because there are many possi ...

  5. BZOJ 4766: 文艺计算姬 [矩阵树定理 快速乘]

    传送门 题意: 给定一个一边点数为n,另一边点数为m,共有n*m条边的带标号完全二分图$K_{n,m}$ 求生成树个数 1 <= n,m,p <= 10^18 显然不能暴力上矩阵树定理 看 ...

  6. bzoj 4596 [Shoi2016]黑暗前的幻想乡 矩阵树定理+容斥

    4596: [Shoi2016]黑暗前的幻想乡 Time Limit: 20 Sec  Memory Limit: 256 MBSubmit: 559  Solved: 325[Submit][Sta ...

  7. 【LOJ#6072】苹果树(矩阵树定理,折半搜索,容斥)

    [LOJ#6072]苹果树(矩阵树定理,折半搜索,容斥) 题面 LOJ 题解 emmmm,这题似乎猫讲过一次... 显然先\(meet-in-the-middle\)搜索一下对于每个有用的苹果数量,满 ...

  8. 2019.01.02 bzoj2467: [中山市选2010]生成树(矩阵树定理)

    传送门 矩阵树定理模板题. 题意简述:自己看题面吧太简单懒得写了 直接构建出这4n4n4n个点然后按照题面连边之后跑矩阵树即可. 代码: #include<bits/stdc++.h> # ...

  9. [CF917D]Stranger Trees[矩阵树定理+解线性方程组]

    题意 给你 \(n\) 个点的无向完全图,指定一棵树 \(S\),问有多少棵生成树和这棵树的公共边数量为 \(k\in[0,n-1]\) \(n\leq 100\) 分析 考虑矩阵树定理,把对应的树边 ...

随机推荐

  1. 「日常训练」 Longest Run on a Snowboard (UVA-10285)

    题意 其实就是一条二维的LIS,但是还是做的一愣一愣的,多努力. 考虑$dp[i][j]$为从(i,j)出发的二维LIS的最大值,那么$dp[i][j]=max\{dp[i−di[k]][j−dj[k ...

  2. Matlab R2016a 破解教程

    郑重声明:图片来源于网络,在这里感谢图片提供者,我写这篇教程,是希望帮助后来者少走弯路,而且,这是一种比较简单有效的破解方法,针对网上那种修改本地文件的方法,在这里不做介绍,如果想体验,可自己百度或谷 ...

  3. 爬虫1.1-基础知识+requests库

    目录 爬虫-基础知识+requests库 1. 状态返回码 2. URL各个字段解释 2. requests库 3. requests库爬虫的基本流程 爬虫-基础知识+requests库 关于html ...

  4. gitignore 文件生效办法

    .gitignore 可以添加一些不加入git版本控制的文件 比如一些测试文件.因人而异的配置信息等等 .gitignore 文件展示如下 /.idea/target//.classpath /.pr ...

  5. 《Effective C++》读书笔记 条款02 尽量以const,enum,inline替换#define

    Effective C++在此条款中总结出两个结论 1.对于单纯常量,最好以const对象或enum替换#define 2.对于形似函数的宏,最好改用inline函数替换#define 接下来我们进行 ...

  6. 蓝桥杯算法训练 区间k大数查询

    算法训练 区间k大数查询   问题描述 给定一个序列,每次询问序列中第l个数到第r个数中第K大的数是哪个. 输入格式 第一行包含一个数n,表示序列长度. 第二行包含n个正整数,表示给定的序列. 第三个 ...

  7. 查找当前对象中的方法对象的属性叫做_event_name的方法

    setattr( self, '_events', {e._event_name: e for _, e in getmembers(self, lambda x: ismethod(x) and h ...

  8. 从oracle导入hive

    sqoop import --connect jdbc:oracle:thin:@10.39.1.43:1521/rcrm --username bi_query --password ####### ...

  9. 关于css的总结

    写在前面  ,学好css,需要长期的推敲和积累  ,细节是不断完善的,逐渐形成自己的风格    让自己的css更加接近优雅. 下面来总结一些我觉得比较好的css代码风格 : 1. 一般网页中的背景 用 ...

  10. c#程序的config文件问题

    1.vshost.exe.config和app.config两个文件可不要,但exe.config文件不可少. 2.但是app.config最好也要修改了,每次重新生成程序的时候.exe.cmonfi ...