【BZOJ4894】天赋(矩阵树定理)

题面

BZOJ

Description

小明有许多潜在的天赋,他希望学习这些天赋来变得更强。正如许多游戏中一样,小明也有n种潜在的天赋,但有

一些天赋必须是要有前置天赋才能够学习得到的。也就是说,有一些天赋必须是要在学习了另一个天赋的条件下才

能学习的。比如,要想学会"开炮",必须先学会"开枪"。一项天赋可能有多个前置天赋,但只需习得其中一个就可

以学习这一项天赋。上帝不想为难小明,于是小明天生就已经习得了1号天赋-----"打架"。于是小明想知道学习完

这n种天赋的方案数,答案对1,000,000,007取模。

Input

第一行一个整数n。

接下来是一个n*n的01矩阵,第i行第j列为1表示习得天赋j的一个前置天赋为i。

数据保证第一列和主对角线全为0。

n<=300

Output

第一行一个整数,问题所求的方案数。

Sample Input

8

01111111

00101001

01010111

01001111

01110101

01110011

01111100

01110110

Sample Output

72373

题解

还是矩阵树模板题啊。。。

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<queue>
using namespace std;
#define ll long long
#define RG register
#define MAX 303
#define MOD 1000000007
inline int read()
{
RG int x=0,t=1;RG char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=-1,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return x*t;
}
int a[MAX][MAX],n;
char g[MAX];
int main()
{
n=read();
for(int i=1;i<=n;++i)
{
scanf("%s",g+1);
for(int j=1;j<=n;++j)
if(g[j]=='1')a[i][j]--,a[j][j]++;
}
int ans=1;
for(int i=2;i<=n;++i)
for(int j=i+1;j<=n;++j)
while(a[j][i])
{
int t=a[i][i]/a[j][i];
for(int k=i;k<=n;++k)a[i][k]=(a[i][k]-1ll*a[j][k]*t%MOD+MOD)%MOD,swap(a[i][k],a[j][k]);
ans*=-1;
}
for(int i=2;i<=n;++i)ans=1ll*ans*a[i][i]%MOD;
printf("%d\n",(ans+MOD)%MOD);
return 0;
}

【BZOJ4894】天赋(矩阵树定理)的更多相关文章

  1. BZOJ4894:天赋(矩阵树定理)

    Description 小明有许多潜在的天赋,他希望学习这些天赋来变得更强.正如许多游戏中一样,小明也有n种潜在的天赋,但有一些天赋必须是要有前置天赋才能够学习得到的. 也就是说,有一些天赋必须是要在 ...

  2. 【bzoj4894】天赋 矩阵树定理

    题目描述 小明有许多潜在的天赋,他希望学习这些天赋来变得更强.正如许多游戏中一样,小明也有n种潜在的天赋,但有一些天赋必须是要有前置天赋才能够学习得到的.也就是说,有一些天赋必须是要在学习了另一个天赋 ...

  3. @总结 - 7@ 生成树计数 —— matrix - tree 定理(矩阵树定理)与 prüfer 序列

    目录 @0 - 参考资料@ @0.5 - 你所需要了解的线性代数知识@ @1 - 矩阵树定理主体@ @证明 part - 1@ @证明 part - 2@ @证明 part - 3@ @证明 part ...

  4. [spoj104][Highways] (生成树计数+矩阵树定理+高斯消元)

    In some countries building highways takes a lot of time... Maybe that's because there are many possi ...

  5. BZOJ 4766: 文艺计算姬 [矩阵树定理 快速乘]

    传送门 题意: 给定一个一边点数为n,另一边点数为m,共有n*m条边的带标号完全二分图$K_{n,m}$ 求生成树个数 1 <= n,m,p <= 10^18 显然不能暴力上矩阵树定理 看 ...

  6. bzoj 4596 [Shoi2016]黑暗前的幻想乡 矩阵树定理+容斥

    4596: [Shoi2016]黑暗前的幻想乡 Time Limit: 20 Sec  Memory Limit: 256 MBSubmit: 559  Solved: 325[Submit][Sta ...

  7. 【LOJ#6072】苹果树(矩阵树定理,折半搜索,容斥)

    [LOJ#6072]苹果树(矩阵树定理,折半搜索,容斥) 题面 LOJ 题解 emmmm,这题似乎猫讲过一次... 显然先\(meet-in-the-middle\)搜索一下对于每个有用的苹果数量,满 ...

  8. 2019.01.02 bzoj2467: [中山市选2010]生成树(矩阵树定理)

    传送门 矩阵树定理模板题. 题意简述:自己看题面吧太简单懒得写了 直接构建出这4n4n4n个点然后按照题面连边之后跑矩阵树即可. 代码: #include<bits/stdc++.h> # ...

  9. [CF917D]Stranger Trees[矩阵树定理+解线性方程组]

    题意 给你 \(n\) 个点的无向完全图,指定一棵树 \(S\),问有多少棵生成树和这棵树的公共边数量为 \(k\in[0,n-1]\) \(n\leq 100\) 分析 考虑矩阵树定理,把对应的树边 ...

随机推荐

  1. 用CRF做命名实体识别(二)

    用CRF做命名实体识别(一) 用CRF做命名实体识别(三) 一. 摘要 本文是对上文用CRF做命名实体识别(一)做一次升级.多添加了5个特征(分别是词性,词语边界,人名,地名,组织名指示词),另外还修 ...

  2. 第十五届北京师范大学程序设计竞赛现场决赛题解&源码(A.思维,C,模拟,水,坑,E,几何,思维,K,字符串处理)

    #include <bits/stdc++.h> using namespace std; int main() { int T,n,a,b; while(cin>>T) { ...

  3. Selenium自动化测试第二天(下)

    如有任何学习问题,可以添加作者微信:lockingfree 目录 Selenium自动化测试基础 Selenium自动化测试第一天(上) Selenium自动化测试第一天(下) Selenium自动化 ...

  4. Mongo DB Java操作

    1.首先下载Mongo DB java 驱动 2.操作Mongo 增删改查 package com.sjjy.mongo; import java.util.ArrayList;import java ...

  5. RL_Learning

    Key Concepts in RL 标签(空格分隔): RL_learning OpenAI Spinning Up原址 states and observations (状态和观测) action ...

  6. 脚本 script 常用脚本

    目录 remove_all_pyc find_all_links rename_with_slice load_json_without_dupes execution_time benchmark_ ...

  7. 2019-1-7Xiaomi Mi5 刷全球版MIUI教程

    2019-1-7Xiaomi Mi5 刷全球版MIUI教程 mi5 教程 小书匠  欢迎走进zozo的学习之旅. 前言 固件下载 刷机 刷recovery,root 试用体验 其他参考 前言 机器是老 ...

  8. C语言中的字符串分割函数

    char *strtok(char *s, const char *delim); 分解字符串为一组字符串.s为要分解的字符串,delim为分隔符字符串. 从s开头开始的一个个被分割的串.当没有被分割 ...

  9. Thunder团队第二周 - Scrum会议2

    Scrum会议2 小组名称:Thunder 项目名称:爱阅app Scrum Master:胡佑蓉 工作照片: 参会成员: 王航:http://www.cnblogs.com/wangh013/ 李传 ...

  10. Thunder团队第二周 - Scrum会议1

    Scrum会议1 小组名称:Thunder 项目名称:爱阅app Scrum Master:王航 工作照片: 参会成员: 王航(Master):http://www.cnblogs.com/wangh ...