BZOJ2005:[Noi2010]能量采集——题解
http://www.lydsy.com/JudgeOnline/problem.php?id=2005
Description
Input
仅包含一行,为两个整数n和m。
Output
仅包含一个整数,表示总共产生的能量损失。
Sample Input
5 4
【样例输入2】
3 4
Sample Output
【样例输出1】
36
【样例输出2】
20
————————————————————————
参考了http://blog.csdn.net/Clove_unique/article/details/51089272
如果你做过POJ3090的话,应该能够想到,对于一个点(x,y),则其到原点之间就经过了gcd(x,y)-1个点。
证明很显然:设t=gcd(x,y),x=at,y=bt,显然经过(a,b)(2a,2b)……(x,y),不算最后一个点,一共经过了t-1个点。
带入我们的公式得到我们所要求的结果:2*(∑∑gcd(x,y))-m*n
也就是变成了求∑∑gcd(x,y)的题。
莫比乌斯反演一下得到∑∑∑phi(d)(d|gcd(x,y))
又因为d|gcd(x,y)导出d|a&&d|b,可以有:
∑n/d*m/d*phi(d)
好的我们又做完了。
#include<cstdio>
#include<queue>
#include<cctype>
#include<cstring>
#include<cmath>
#include<iostream>
#include<algorithm>
using namespace std;
typedef long long ll;
const int N=;
ll phi[N],su[N],sum[N];
bool he[N];
void Euler(int n){
int tot=;
phi[]=;
for(int i=;i<=n;i++){
if(!he[i]){
su[++tot]=i;
phi[i]=i-;
}
for(int j=;j<=tot;j++){
if(i*su[j]>=n)break;
he[i*su[j]]=;
if(i%su[j]==){
phi[i*su[j]]=phi[i]*su[j];break;
}
else phi[i*su[j]]=phi[i]*(su[j]-);
}
}
for(int i=;i<=n;i++)phi[i]+=phi[i-];
return;
}
int main(){
ll n,m,ans=;
scanf("%lld%lld",&n,&m);
if(n>m)swap(n,m);
Euler(n+);
for(ll i=,j;i<=n;i=j+){
j=min(n/(n/i),m/(m/i));
ans+=(ll)(phi[j]-phi[i-])*(n/i)*(m/i);
}
printf("%lld\n",*ans-n*m);
return ;
}
BZOJ2005:[Noi2010]能量采集——题解的更多相关文章
- BZOJ2005 NOI2010 能量采集 【莫比乌斯反演】
BZOJ2005 NOI2010 能量采集 Description 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些 ...
- bzoj2005: [Noi2010]能量采集
lsj师兄的题解 一个点(x, y)的能量损失为 (gcd(x, y) - 1) * 2 + 1 = gcd(x, y) * 2 - 1. 设g(i)为 gcd(x, y) = i ( 1 < ...
- [BZOJ2005][Noi2010]能量采集 容斥+数论
2005: [Noi2010]能量采集 Time Limit: 10 Sec Memory Limit: 552 MBSubmit: 4394 Solved: 2624[Submit][Statu ...
- [bzoj2005][Noi2010][能量采集] (容斥 or 欧拉函数)
Description 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后, 栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起. 栋栋的植物种 ...
- BZOJ2005:[NOI2010]能量采集(莫比乌斯反演,欧拉函数)
Description 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起. 栋栋的植物种得 ...
- BZOJ2005: [Noi2010]能量采集(容斥原理 莫比乌斯反演)
Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 4727 Solved: 2877[Submit][Status][Discuss] Descript ...
- BZOJ2005: [Noi2010]能量采集(欧拉函数)
Description 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后, 栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起. 栋栋的植物种 ...
- 【莫比乌斯反演】BZOJ2005 [NOI2010]能量采集
Description 求sigma gcd(x,y)*2-1,1<=x<=n, 1<=y<=m.n, m<=1e5. Solution f(n)为gcd正好是n的(x, ...
- [luogu1447][bzoj2005][NOI2010]能量采集
题目大意 求出\(\sum_{i=1}^{n} \sum_{i=1}^{m} gcd(i,j)\times 2 -1\). 题解 解法还是非常的巧妙的,我们考虑容斥原理.我们定义\(f[i]\)表示\ ...
随机推荐
- HTML随笔3
1. *svg(可伸缩矢量图)标签画圆,其中r表示半径,cx和cy表示其圆心的坐标 <svg><circle r="100" cx="200" ...
- 题解 CF682C 【Alyona and the Tree】
简单搜索题,我们每找到一组不满足题目给出条件的点和边就将其整个子树删除,然后最终答案加上该子树的大小即可.注意,搜索的时候如果当前的边权和sum已经为负了,应该将其改为0(可以想想为什么) 注:题目翻 ...
- LeetCode 135——分发糖果
1. 题目 2. 解答 初始化左序奖赏全为 1,从左往右遍历,如果右边的人评分比左边高,右边奖赏比左边奖赏增 1. 初始化右序奖赏全为 1,从右往左遍历,如果左边的人评分比右边高,左边奖赏比右边奖赏增 ...
- leetcode个人题解——#8 string to integer
第八题 class Solution { public: int myAtoi(string str) { ; ; ; while(str[i] == ' ')i++; if (str[i] == ' ...
- vs2008 c#项目调试dll源码,问题:“若要调试此模块,请将其项目生成配置更改为“调试”模式” 的解决方案
情况: 1:有程序 Trans.exe 的vs2008 c#源码:Trans.exe项目里引用了 Water.dll: 2:有Water.dll的项目源码: 3:想在Trans.exe里调试Water ...
- 七:Web Application Proxy
yarn自带了web接口,默认是和RM一起的(8088端口).但是为了减少从web接口受到的攻击,可以把Web接口单独放在别的机器上. 设置下web代理就行了 Configurations Confi ...
- Keil sct分散加载文件
官方说明:http://www.keil.com/support/man/docs/armlink/armlink_pge1401393372646.htm
- sql 至少含有
查询Score表中至少有5名学生选修的并以3开头的课程的平均分数: select avg(degree),cnofrom scorewhere cno like '3%'group by cnohav ...
- Ubuntu 配置 Android 开发 环境
. 果断换Ubuntu了, Ubuntu的截图效果不好, 不能设置阴影 ... 作者 : 万境绝尘 转载请注明出处 : http://blog.csdn.net/shulianghan/article ...
- DAY7敏捷冲刺
站立式会议 工作安排 (1)服务器配置 服务器端项目结构调整 (2)数据库配置 单词学习记录+用户信息 (3)客户端 客户端项目结构调整,代码功能分离 燃尽图 燃尽图有误,已重新修改,先贴卡片的界面, ...