BZOJ5286:[HNOI/AHOI2018]转盘——题解
https://www.lydsy.com/JudgeOnline/problem.php?id=5286
https://www.luogu.org/problemnew/show/P4425
题面见上面。
然后因为懒得写公式了所以看这个人的博客吧:https://www.luogu.org/blog/litble-blog/solution-p4425
合并的原理如果看了那个博客还没看懂的话,不妨看看下面这张图:
我们要求的是最上面区间的答案,但显然不能是tr[a]=min(tr[a<<1]],tr[a<<1|1]),因为中间的区间还需要合并。
因为参考博客已经证明了tr[a]表示的区间长度对答案没有影响了所以我们就考虑所有的区间即可。
我们的suan函数的a是最上边区间的左区间,mx和num就是当前区间的mx[a]。
显然当mx>=num的时候a的左区间答案只受mx的影响,而右区间的靠右位置有可能不受mx的影响,因此递归处理。
当mx<num的时候a的右区间只受num的影响,取一个最小值为mid+1+num,再递归处理左区间即可(因为左区间的mx可能比num大)。
#include<cmath>
#include<queue>
#include<vector>
#include<cstdio>
#include<cctype>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
typedef long long ll;
const int N=2e5+;
inline int read(){
int X=,w=;char ch=;
while(!isdigit(ch)){w|=ch=='-';ch=getchar();}
while(isdigit(ch))X=(X<<)+(X<<)+(ch^),ch=getchar();
return w?-X:X;
}
int n,m,p,t[N],b[N],tr[N*],mx[N*];
int suan(int a,int l,int r,int num){
if(l==r)return l+max(mx[a],num);
int mid=(l+r)>>;
if(mx[a<<|]>=num)
return min(tr[a],suan(a<<|,mid+,r,num));
else return min(suan(a<<,l,mid,num),mid++num);
}
void upt(int a,int l,int r){
mx[a]=max(mx[a<<],mx[a<<|]);
tr[a]=suan(a<<,l,(l+r)>>,mx[a<<|]);
}
void build(int a,int l,int r){
if(l==r){
tr[a]=t[l];mx[a]=b[l];
return;
}
int mid=(l+r)>>;
build(a<<,l,mid);build(a<<|,mid+,r);
upt(a,l,r);
}
void mdy(int a,int l,int r,int x){
if(l==r){
tr[a]=t[l];mx[a]=b[l];
return;
}
int mid=(l+r)>>;
if(x<=mid)mdy(a<<,l,mid,x);
else mdy(a<<|,mid+,r,x);
upt(a,l,r);
}
int main(){
n=read(),m=read(),p=read();
for(int i=;i<=n;i++){
t[i]=t[i+n]=read();
b[i]=t[i]-i;
b[i+n]=t[i+n]-i-n;
}
build(,,n<<);
int lastans=tr[]+n-;printf("%d\n",lastans);
for(int i=;i<=m;i++){
int x=read(),y=read();
if(p)x^=lastans,y^=lastans;
t[x]=t[x+n]=y;b[x]=y-x;b[x+n]=y-x-n;
mdy(,,n<<,x);mdy(,,n<<,x+n);
lastans=tr[]+n-;printf("%d\n",lastans);
}
return ;
}
+++++++++++++++++++++++++++++++++++++++++++
+本文作者:luyouqi233。 +
+欢迎访问我的博客:http://www.cnblogs.com/luyouqi233/+
+++++++++++++++++++++++++++++++++++++++++++
BZOJ5286:[HNOI/AHOI2018]转盘——题解的更多相关文章
- BZOJ5286 HNOI/AHOI2018转盘(分块/线段树)
显然最优走法是先一直停在初始位置然后一次性走完一圈.将序列倍长后,相当于找一个长度为n的区间[l,l+n),使其中ti+l+n-1-i的最大值最小.容易发现ti-i>ti+n-(i+n),所以也 ...
- [HNOI/AHOI2018]转盘(线段树优化单调)
gugu bz lei了lei了,事独流体毒瘤题 一句话题意:任选一个点开始,每个时刻向前走一步或者站着不动 问实现每一个点都在$T_i$之后被访问到的最短时间 Step 1 该题可证: 最优方案必 ...
- BZOJ5288 & 洛谷4436 & LOJ2508:[HNOI/AHOI2018]游戏——题解
https://www.lydsy.com/JudgeOnline/problem.php?id=5288 https://www.luogu.org/problemnew/show/P4436 ht ...
- P4425 【[HNOI/AHOI2018]转盘】
颂魔眼中的一眼题我大湖南竟无一人\(AC\) 首先我们考虑一个性质:我们肯定存在一种最优解,满足从某个点出发,一直往前走,不停下来. 证明:我们假设存在一种最优解,是在\(t_i\)的时候到达\(a\ ...
- 洛谷P4425 [HNOI/AHOI2018]转盘(线段树)
题意 题目链接 Sol 首先猜一个结论:对于每次询问,枚举一个起点然后不断等到某个点出现时才走到下一个点一定是最优的. 证明不会,考场上拍了3w组没错应该就是对的吧... 首先把数组倍长一下方便枚举起 ...
- [HNOI/AHOI2018]转盘
一个结论:一定存在一个最优解只走一圈.否则考虑从最后一个结束位置开始一定可以达到相同效果 画个图,类似是一种斜线感觉 考虑一个高度贡献的最高点 对于i开始的连续n个,答案是:max(Tj-j)+i+n ...
- BZOJ5290 & 洛谷4438:[HNOI/AHOI2018]道路——题解
https://www.lydsy.com/JudgeOnline/problem.php?id=5290 https://www.luogu.org/problemnew/show/P4438 的确 ...
- BZOJ5289 & 洛谷4437:[HNOI/AHOI2018]排列——题解
https://www.lydsy.com/JudgeOnline/problem.php?id=5289 https://www.luogu.org/problemnew/show/P4437 考虑 ...
- 【题解】Luogu P4436 [HNOI/AHOI2018]游戏
原题传送门 \(n^2\)过百万在HNOI/AHOI2018中真的成功了qwqwq 先将没门分格的地方连起来,枚举每一个块,看向左向右最多能走多远,最坏复杂度\(O(n^2)\),但出题人竟然没卡(建 ...
随机推荐
- 华天正real210开发板测试-第1篇
1. 网上买的real210二手开发板,今天刚到测试一下 2. 启动方式,不过目前唯一的问题是没有开发资料,然后给原厂发了份邮件要资料,原厂爽快的给了,必须给华天正这服务态度点个赞啊 3. 调到nan ...
- python版protobuf 安装
转自:http://www.tuicool.com/articles/VfQfM3 1. 下载protobuf源代码(当前最新版本为:2.5.0) #cd /opt #wget https://pro ...
- linux下实现ssh无密码登录访问
在192.168.9.51机器上 1)运行:#ssh-keygen -t rsa 2)然后拍两下回车(均选择默认) 3)运行: #ssh-copy-id -i /root/.ssh/id_rsa.pu ...
- 一对多,多的逗号分隔存在新字段中(Group_concat 用法)
sql 语句: SELECT ( SELECT Group_concat(t_work_group_user.user_id) FROM ...
- APP功能性测试-2
安装与卸载 应用是否可以在不同的安卓版本上安装(过低不能适配) 安装后是否可以正常运行 安装空间不足时是否有相应提示 如果应用需要通过网络验证之类的安装,需要测试一下断网情况下是否有相应提示 安装过程 ...
- 【SpringCloud】第三篇: 服务消费者(Feign)
前言: 必需学会SpringBoot基础知识 简介: spring cloud 为开发人员提供了快速构建分布式系统的一些工具,包括配置管理.服务发现.断路器.路由.微代理.事件总线.全局锁.决策竞选. ...
- python 终极篇 --- django 视图系统
Django的View(视图) 一个视图函数(类),简称视图,是一个简单的Python 函数(类),它接受Web请求并且返回Web响应. 响应可以是一张网页的HTML内容,一个重定向,一个404错误, ...
- 周期串 (Periodic Strings,UVa455)
#include<stdio.h> #include<string.h> int main(void) { int n,stlen,i,j; ]; while(scanf(&q ...
- 某即时通信工具与RMS结合
某客户内部使用及时通信工具与RMS相结合,如果客户使用了海外版Office 365E3可以直接在手机端使用Office app打开. 如果客户没有使用海外版Office 365E3的版本,需要结合本地 ...
- SpringCloud IDEA 教学 (二) Eureka Service
写在开头 本篇继续介绍基于Eureka的SpringCloud微服务搭建,回顾一下搭建过程, 第一步:建立一个服务注册中心: 第二步:建立微服务并注入到注册中心: 第三步:建立client端来访问微服 ...